Multilingual Name Entity Recognition and Intent Classification Employing
Deep Learning Architectures
- URL: http://arxiv.org/abs/2211.02415v1
- Date: Fri, 4 Nov 2022 12:42:29 GMT
- Title: Multilingual Name Entity Recognition and Intent Classification Employing
Deep Learning Architectures
- Authors: Sofia Rizou, Antonia Paflioti, Angelos Theofilatos, Athena Vakali,
George Sarigiannidis and Konstantinos Ch. Chatzisavvas
- Abstract summary: We explore the effectiveness of two separate families of Deep Learning networks for named entity recognition and intent classification.
The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages.
- Score: 2.9115403886004807
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Named Entity Recognition and Intent Classification are among the most
important subfields of the field of Natural Language Processing. Recent
research has lead to the development of faster, more sophisticated and
efficient models to tackle the problems posed by those two tasks. In this work
we explore the effectiveness of two separate families of Deep Learning networks
for those tasks: Bidirectional Long Short-Term networks and Transformer-based
networks. The models were trained and tested on the ATIS benchmark dataset for
both English and Greek languages. The purpose of this paper is to present a
comparative study of the two groups of networks for both languages and showcase
the results of our experiments. The models, being the current state-of-the-art,
yielded impressive results and achieved high performance.
Related papers
- A Recipe of Parallel Corpora Exploitation for Multilingual Large Language Models [64.79218405438871]
Recent studies have highlighted the potential of exploiting parallel corpora to enhance multilingual large language models.
We investigate the impact of parallel corpora quality and quantity, training objectives, and model size on the performance of multilingual large language models enhanced with parallel corpora.
arXiv Detail & Related papers (2024-06-29T13:12:39Z) - 2M-NER: Contrastive Learning for Multilingual and Multimodal NER with Language and Modal Fusion [9.038363543966263]
We construct a large-scale MMNER dataset with four languages (English, French, German and Spanish) and two modalities (text and image)
We introduce a new model called 2M-NER, which aligns the text and image representations using contrastive learning and integrates a multimodal collaboration module.
Our model achieves the highest F1 score in multilingual and multimodal NER tasks compared to some comparative and representative baselines.
arXiv Detail & Related papers (2024-04-26T02:34:31Z) - Generative linguistic representation for spoken language identification [17.9575874225144]
We explore the utilization of the decoder-based network from the Whisper model to extract linguistic features.
We devised two strategies - one based on the language embedding method and the other focusing on direct optimization of LID outputs.
We conducted experiments on the large-scale multilingual datasets MLS, VoxLingua107, and CommonVoice to test our approach.
arXiv Detail & Related papers (2023-12-18T06:40:24Z) - FonMTL: Towards Multitask Learning for the Fon Language [1.9370453715137865]
We present the first explorative approach to multitask learning, for model capabilities enhancement in Natural Language Processing for the Fon language.
We leverage two language model heads as encoders to build shared representations for the inputs, and we use linear layers blocks for classification relative to each task.
Our results on the NER and POS tasks for Fon, show competitive (or better) performances compared to several multilingual pretrained language models finetuned on single tasks.
arXiv Detail & Related papers (2023-08-28T03:26:21Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
We show that our models obtain competitive results while being orders of magnitude smaller and faster than current state-of-the-art methods.
Our multilabel strategy is more robust to unseen non-target languages compared to multiclass classification.
arXiv Detail & Related papers (2023-06-02T23:04:19Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
We compare sequential fine-tuning with a model for multi-task learning in the context of boosting performance on two tasks.
Our results show that while sequential multi-task learning can be tuned to be good at the first of two target tasks, it performs less well on the second and additionally struggles with overfitting.
arXiv Detail & Related papers (2022-10-31T13:26:08Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
We study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality.
We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances.
Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance.
arXiv Detail & Related papers (2022-03-29T19:03:10Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
Cross-lingual NER transfers knowledge from rich-resource language to languages with low resources.
Existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages.
We develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning.
arXiv Detail & Related papers (2021-06-01T05:46:22Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
Graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task.
Despite the success, their performance could be largely jeopardized in practice since they are unable to capture high-order interaction between words.
We propose a principled model -- hypergraph attention networks (HyperGAT) which can obtain more expressive power with less computational consumption for text representation learning.
arXiv Detail & Related papers (2020-11-01T00:21:59Z) - On the Effects of Using word2vec Representations in Neural Networks for
Dialogue Act Recognition [0.6767885381740952]
We propose a new deep neural network that explores recurrent models to capture word sequences within sentences.
We validate this model on three languages: English, French and Czech.
arXiv Detail & Related papers (2020-10-22T07:21:17Z) - Neurals Networks for Projecting Named Entities from English to Ewondo [6.058868817939519]
We propose a new distributional representation of words to project named entities from a rich language to a low-resource one.
Although the proposed method reached appreciable results, the size of the used neural network was too large.
In this paper, we show experimentally that the same results can be obtained using a smaller neural network.
arXiv Detail & Related papers (2020-03-29T22:05:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.