論文の概要: A Transformer Architecture for Online Gesture Recognition of
Mathematical Expressions
- arxiv url: http://arxiv.org/abs/2211.02643v1
- Date: Fri, 4 Nov 2022 17:55:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 16:01:40.062538
- Title: A Transformer Architecture for Online Gesture Recognition of
Mathematical Expressions
- Title(参考訳): 数学的表現のオンラインジェスチャー認識のためのトランスフォーマーアーキテクチャ
- Authors: Mirco Ramo and Gu\'enol\'e C.M. Silvestre
- Abstract要約: トランスフォーマーアーキテクチャは、グリフストロークに対応するオンライン手書きジェスチャーから表現木を構築するためのエンドツーエンドモデルを提供する。
注意機構は、表現の基本的な構文をエンコードし、学習し、強制するためにうまく利用された。
エンコーダは初めて、目に見えないオンラインの時間的データトークンによって、無限に大きな語彙を形成します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Transformer architecture is shown to provide a powerful framework as an
end-to-end model for building expression trees from online handwritten gestures
corresponding to glyph strokes. In particular, the attention mechanism was
successfully used to encode, learn and enforce the underlying syntax of
expressions creating latent representations that are correctly decoded to the
exact mathematical expression tree, providing robustness to ablated inputs and
unseen glyphs. For the first time, the encoder is fed with spatio-temporal data
tokens potentially forming an infinitely large vocabulary, which finds
applications beyond that of online gesture recognition. A new supervised
dataset of online handwriting gestures is provided for training models on
generic handwriting recognition tasks and a new metric is proposed for the
evaluation of the syntactic correctness of the output expression trees. A small
Transformer model suitable for edge inference was successfully trained to an
average normalised Levenshtein accuracy of 94%, resulting in valid postfix RPN
tree representation for 94% of predictions.
- Abstract(参考訳): Transformerアーキテクチャは、グリフストロークに対応するオンラインの手書きジェスチャーから式木を構築するためのエンドツーエンドモデルとして強力なフレームワークを提供する。
特に、アテンションメカニズムは、正確な数学的表現木に正しくデコードされた潜在表現を生成する表現の基本的な構文をエンコードし、学習し、強制するためにうまく利用された。
エンコーダは初めて、時空間のデータトークンを供給され、無限に大きな語彙を形成し、オンラインジェスチャー認識以上の応用を見出す。
オンライン手書きジェスチャーの新しい教師付きデータセットは、汎用手書き認識タスクのトレーニングモデルに提供され、出力表現木の構文的正しさを評価するための新しい指標が提案される。
エッジ推論に適した小型トランスフォーマーモデルを平均正規化Levenshtein精度94%でトレーニングし,94%の予測で有効なRPN木表現が得られた。
関連論文リスト
- On Eliciting Syntax from Language Models via Hashing [19.872554909401316]
教師なし構文解析は、生のテキストから構文構造を推論することを目的としている。
本稿では,本機能を利用して生テキストから解析木を推定する可能性について検討する。
本手法は,事前学習した言語モデルから高品質な構文解析木を低コストで取得する上で,有効かつ効率的であることを示す。
論文 参考訳(メタデータ) (2024-10-05T08:06:19Z) - PosFormer: Recognizing Complex Handwritten Mathematical Expression with Position Forest Transformer [51.260384040953326]
手書き数学的表現認識(HMER)は、人間と機械の相互作用シナリオに広く応用されている。
本稿では,HMERのための位置フォレスト変換器(PosFormer)を提案する。
PosFormerは、最先端のメソッドである2.03%/1.22%/2、1.83%、および4.62%を一貫して上回っている。
論文 参考訳(メタデータ) (2024-07-10T15:42:58Z) - Self-Supervised Representation Learning for Online Handwriting Text
Classification [0.8594140167290099]
本稿では,日本語と中国語の個人によるオンライン筆跡から情報表現を抽出するための事前学習の前提として,新しいストロークマスキング(POSM)を提案する。
抽出した表現の質を評価するために,本質的評価法と外生的評価法の両方を用いる。
事前訓練されたモデルは、作家の識別、性別分類、手書きの分類といったタスクにおいて、最先端の結果を達成するために微調整される。
論文 参考訳(メタデータ) (2023-10-10T14:07:49Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Online Gesture Recognition using Transformer and Natural Language
Processing [0.0]
トランスフォーマーアーキテクチャは、自然言語文のグリフストロークに対応するオンラインジェスチャーのための強力なマシンフレームワークを提供する。
トランスフォーマーアーキテクチャは、自然言語文のグリフストロークに対応するオンラインジェスチャーのための強力なマシンフレームワークを提供する。
論文 参考訳(メタデータ) (2023-05-05T10:17:22Z) - Syntax-Aware Network for Handwritten Mathematical Expression Recognition [53.130826547287626]
手書き数式認識(HMER)は、多くの潜在的な応用が可能な課題である。
HMERの最近の手法はエンコーダ・デコーダアーキテクチャで優れた性能を実現している。
本稿では,構文情報をエンコーダ・デコーダネットワークに組み込んだHMERの簡易かつ効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-03-03T09:57:19Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
我々は、事前訓練されたフリーズトランスフォーマー言語モデルから文レベルのオートエンコーダを構築する。
我々は、文ボトルネックと1層修飾トランスフォーマーデコーダのみを訓練しながら、マスク付き言語モデリングの目的を生成的・認知的言語として適応する。
本研究では,テキスト類似性タスク,スタイル転送,単一文分類タスクにおける事前学習されたトランスフォーマーからの表現をGLUEベンチマークで抽出する手法よりも,大規模な事前学習モデルよりも少ないパラメータを用いて,より高品質な文表現を実現することを示す。
論文 参考訳(メタデータ) (2021-08-31T19:39:55Z) - Word Shape Matters: Robust Machine Translation with Visual Embedding [78.96234298075389]
文字レベルNLPモデルの入力シンボルを新たに符号化する。
文字が印刷されたときの画像を通して各文字の形状をエンコードする。
我々はこの新たな戦略を視覚的埋め込みと呼び、NLPモデルの堅牢性を向上させることが期待されている。
論文 参考訳(メタデータ) (2020-10-20T04:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。