論文の概要: Word Shape Matters: Robust Machine Translation with Visual Embedding
- arxiv url: http://arxiv.org/abs/2010.09997v1
- Date: Tue, 20 Oct 2020 04:08:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 05:52:37.541728
- Title: Word Shape Matters: Robust Machine Translation with Visual Embedding
- Title(参考訳): Word Shape Matters: Visual Embeddingによるロバスト機械翻訳
- Authors: Haohan Wang, Peiyan Zhang, Eric P. Xing
- Abstract要約: 文字レベルNLPモデルの入力シンボルを新たに符号化する。
文字が印刷されたときの画像を通して各文字の形状をエンコードする。
我々はこの新たな戦略を視覚的埋め込みと呼び、NLPモデルの堅牢性を向上させることが期待されている。
- 参考スコア(独自算出の注目度): 78.96234298075389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural machine translation has achieved remarkable empirical performance over
standard benchmark datasets, yet recent evidence suggests that the models can
still fail easily dealing with substandard inputs such as misspelled words, To
overcome this issue, we introduce a new encoding heuristic of the input symbols
for character-level NLP models: it encodes the shape of each character through
the images depicting the letters when printed. We name this new strategy visual
embedding and it is expected to improve the robustness of NLP models because
humans also process the corpus visually through printed letters, instead of
machinery one-hot vectors. Empirically, our method improves models' robustness
against substandard inputs, even in the test scenario where the models are
tested with the noises that are beyond what is available during the training
phase.
- Abstract(参考訳): ニューラルマシン翻訳は、標準ベンチマークデータセットよりも顕著な実験的な性能を達成しているが、近年の証拠は、ミススペル語などのサブスタンダード入力の処理に失敗する可能性があることを示唆している。この問題を克服するために、文字レベルのNLPモデルに対して、入力シンボルのエンコードヒューリスティックを導入し、印刷時に文字を描写した画像を通じて各文字の形状を符号化する。
我々はこの新たな戦略を視覚埋め込みと呼び、機械の1ホットベクトルではなく、人間が印刷文字を通してコーパスを視覚的に処理するため、NLPモデルの堅牢性を向上させることが期待されている。
実験結果から,本手法は,モデルがトレーニングフェーズで使用可能な以上のノイズでテストされるテストシナリオにおいても,準標準入力に対するモデルの頑健性を向上させる。
関連論文リスト
- Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation [81.45400849638347]
In-image Machine Translation (IIMT) は、ソース言語のテキストを含む画像をターゲット言語の翻訳を含む画像に変換することを目的としている。
本稿では,4つのモジュールからなるエンドツーエンドIIMTモデルを提案する。
本モデルでは,70.9%のパラメータしか持たないカスケードモデルと比較して競争性能が向上し,画素レベルのエンド・ツー・エンドIIMTモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-07-03T08:15:39Z) - Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image
Generation [86.65991476980648]
我々は,自動回帰テキスト・画像生成のための事前学習言語モデルを適用した。
事前訓練された言語モデルは限られた助けを提供する。
論文 参考訳(メタデータ) (2023-11-27T07:19:26Z) - Improving Input-label Mapping with Demonstration Replay for In-context
Learning [67.57288926736923]
In-context Learning (ICL)は、大規模な自己回帰言語モデルの出現する能力である。
Sliding Causal Attention (RdSca) と呼ばれる新しいICL法を提案する。
ICL実験において,本手法は入力ラベルマッピングを大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-10-30T14:29:41Z) - Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models
Robust with Little Cost [5.672132510411465]
最先端のNLPシステムは、単語埋め込みを伴う入力を表すが、外語彙の単語に直面すると、これらは不安定である。
我々は,単語の表面形のみを用いて事前学習した埋め込みの挙動を学習することにより,未知語に対するベクトルを生成するための模倣様モデルの原理に従う。
本稿では,既存の事前学習型言語モデル(BERTなど)の単語表現を拡張したシンプルなコントラスト学習フレームワークLOVEを提案する。
論文 参考訳(メタデータ) (2022-03-15T13:11:07Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - Understanding Model Robustness to User-generated Noisy Texts [2.958690090551675]
NLPでは、スペルエラーなどの自然発生ノイズによってモデル性能が劣化することが多い。
本稿では,文法的誤り訂正コーパスから統計的に誤りをモデル化する。
論文 参考訳(メタデータ) (2021-10-14T14:54:52Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
我々は、事前訓練されたフリーズトランスフォーマー言語モデルから文レベルのオートエンコーダを構築する。
我々は、文ボトルネックと1層修飾トランスフォーマーデコーダのみを訓練しながら、マスク付き言語モデリングの目的を生成的・認知的言語として適応する。
本研究では,テキスト類似性タスク,スタイル転送,単一文分類タスクにおける事前学習されたトランスフォーマーからの表現をGLUEベンチマークで抽出する手法よりも,大規模な事前学習モデルよりも少ないパラメータを用いて,より高品質な文表現を実現することを示す。
論文 参考訳(メタデータ) (2021-08-31T19:39:55Z) - Evaluating the Robustness of Neural Language Models to Input
Perturbations [7.064032374579076]
本研究では,雑音の多い入力テキストをシミュレートするために,文字レベルおよび単語レベルの摂動法を設計し,実装する。
本稿では,BERT,XLNet,RoBERTa,ELMoなどの高性能言語モデルを用いて,入力摂動の異なるタイプの処理能力について検討する。
その結果, 言語モデルは入力摂動に敏感であり, 小さな変化が生じても性能が低下することが示唆された。
論文 参考訳(メタデータ) (2021-08-27T12:31:17Z) - CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial
Text Generation [20.27052525082402]
本稿では,制御可能な属性による逆テキストを生成する制御付き逆テキスト生成(CAT-Gen)モデルを提案する。
実世界のNLPデータセットを用いた実験により,本手法はより多種多様な逆数文を生成することができることが示された。
論文 参考訳(メタデータ) (2020-10-05T21:07:45Z) - Stacked DeBERT: All Attention in Incomplete Data for Text Classification [8.900866276512364]
変換器から双方向表現を重畳するスタックドデノナイズ(Stacked Denoising Bidirectional Representations)を提案する。
本モデルでは, 感情や意図の分類作業において, 音声テキスト誤りのあるツイートやテキストに現れる非公式/不正テキストにおいて, F1スコアが向上し, 堅牢性が向上したことを示す。
論文 参考訳(メタデータ) (2020-01-01T04:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。