Quantum Work Capacitances: ultimate limits for energy extraction on noisy quantum batteries
- URL: http://arxiv.org/abs/2211.02685v2
- Date: Wed, 17 Apr 2024 13:59:12 GMT
- Title: Quantum Work Capacitances: ultimate limits for energy extraction on noisy quantum batteries
- Authors: Salvatore Tirone, Raffaele Salvia, Stefano Chessa, Vittorio Giovannetti,
- Abstract summary: We present a theoretical analysis of the energy recovery efficiency for quantum batteries composed of many identical quantum cells undergoing noise.
Explicit evaluations of such quantities are presented for the case where the energy storing system undergoes through dephasing and depolarizing noise.
- Score: 1.1768314197952987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a theoretical analysis of the energy recovery efficiency for quantum batteries composed of many identical quantum cells undergoing noise. While the possibility of using quantum effects to speed up the charging processes of batteries have been vastly investigated, In order to traslate these ideas into working devices it is crucial to assess the stability of the storage phase in the quantum battery elements when they are in contact with environmental noise. In this work we formalize this problem introducing a series of operationally well defined figures of merit (the work capacitances and the Maximal Asymptotic Work/Energy Ratios) which gauge the highest efficiency one can attain in recovering useful energy from quantum battery models that are formed by large collections of identical and independent elements (quantum cells or q-cells). Explicit evaluations of such quantities are presented for the case where the energy storing system undergoes through dephasing and depolarizing noise.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Nonreciprocal Quantum Batteries [0.0]
We introduce nonreciprocity through reservoir engineering during the charging process, resulting in a substantial increase in energy accumulation.
Despite local dissipation, the nonreciprocal approach demonstrates a fourfold increase in battery energy.
In a broader context, the concept of nonreciprocal charging has significant implications for sensing, energy capture, and storage technologies.
arXiv Detail & Related papers (2024-01-10T11:50:03Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - A quantum battery with quadratic driving [0.0]
Quantum batteries are energy storage devices built using quantum mechanical objects.
We study theoretically a bipartite quantum battery model, composed of a driven charger connected to an energy holder.
arXiv Detail & Related papers (2023-11-04T15:01:36Z) - Analytically solvable many-body Rosen-Zener quantum battery [0.0]
How to obtain analytical solutions for quantum battery systems and achieve a full charging is a crucial element of the quantum battery.
Here, we investigate the Rosen-Zener quantum battery with $N$ two-level systems, which includes atomic interactions and external driving field.
arXiv Detail & Related papers (2023-07-13T13:30:14Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum work extraction efficiency for noisy quantum batteries: the role
of coherence [1.2856037831335994]
We analyze different types of noise models mimicking self-discharging, thermalization and dephasing effects.
In this context we show that input quantum coherence can significantly improve the storage performance of noisy quantum batteries.
arXiv Detail & Related papers (2023-05-26T10:32:53Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum advantage of two-level batteries in self-discharging process [0.0]
We study the decoherence effects that lead to charge leakage to the surrounding environment.
The quantum advantage concerning the classical counterpart is highlighted for single- and multi-cell quantum batteries.
arXiv Detail & Related papers (2020-12-22T13:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.