論文の概要: A Machine Learning-based Framework for Predictive Maintenance of
Semiconductor Laser for Optical Communication
- arxiv url: http://arxiv.org/abs/2211.02842v1
- Date: Sat, 5 Nov 2022 07:53:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 17:58:22.032231
- Title: A Machine Learning-based Framework for Predictive Maintenance of
Semiconductor Laser for Optical Communication
- Title(参考訳): 光通信用半導体レーザの予測保守のための機械学習フレームワーク
- Authors: Khouloud Abdelli, Helmut Griesser, and Stephan Pachnicke
- Abstract要約: 半導体チューナブルレーザーの加速時効試験から得られた実験データを用いて,本フレームワークの有効性を検証した。
提案手法は,小さな根平均二乗誤差(RMSE)0.01,優れた異常検出精度94.24%,既存のMLベースのレーザRUL予測モデルよりも優れたRUL推定能力を有する,非常に優れた劣化性能予測性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semiconductor lasers, one of the key components for optical communication
systems, have been rapidly evolving to meet the requirements of next generation
optical networks with respect to high speed, low power consumption, small form
factor etc. However, these demands have brought severe challenges to the
semiconductor laser reliability. Therefore, a great deal of attention has been
devoted to improving it and thereby ensuring reliable transmission. In this
paper, a predictive maintenance framework using machine learning techniques is
proposed for real-time heath monitoring and prognosis of semiconductor laser
and thus enhancing its reliability. The proposed approach is composed of three
stages: i) real-time performance degradation prediction, ii) degradation
detection, and iii) remaining useful life (RUL) prediction. First of all, an
attention based gated recurrent unit (GRU) model is adopted for real-time
prediction of performance degradation. Then, a convolutional autoencoder is
used to detect the degradation or abnormal behavior of a laser, given the
predicted degradation performance values. Once an abnormal state is detected, a
RUL prediction model based on attention-based deep learning is utilized.
Afterwards, the estimated RUL is input for decision making and maintenance
planning. The proposed framework is validated using experimental data derived
from accelerated aging tests conducted for semiconductor tunable lasers. The
proposed approach achieves a very good degradation performance prediction
capability with a small root mean square error (RMSE) of 0.01, a good anomaly
detection accuracy of 94.24% and a better RUL estimation capability compared to
the existing ML-based laser RUL prediction models.
- Abstract(参考訳): 光通信システムの重要成分の一つである半導体レーザーは、高速、低消費電力、小型化など、次世代光ネットワークの要求を満たすために急速に進化してきた。
しかし、これらの要求は半導体レーザの信頼性に深刻な課題をもたらした。
そのため、その改善と信頼性の高い伝送の確保に多大な注意が払われている。
本稿では,半導体レーザのリアルタイムヒースモニタリングと予後予測のための機械学習技術を用いた予測保守フレームワークを提案し,信頼性を向上する。
提案手法は以下の3段階からなる。
一 リアルタイムの性能劣化予測
二 劣化検出、及び
三 有益生命(rul)予測の継続
まず、性能劣化のリアルタイム予測に注意に基づくゲート再帰単位(GRU)モデルを採用する。
そして、予測した劣化性能値から、畳み込みオートエンコーダを用いてレーザの劣化または異常挙動を検出する。
異常が検出されると、注意に基づく深層学習に基づくRUL予測モデルを利用する。
その後、推定RULは、意思決定と保守計画のために入力される。
提案手法は, 半導体波長可変レーザの加速時効試験から得られた実験データを用いて検証した。
提案手法は,小さな根平均二乗誤差(RMSE)0.01,優れた異常検出精度94.24%,既存のMLベースのレーザRUL予測モデルよりも優れたRUL推定能力を有する,非常に優れた劣化性能予測能力を実現する。
関連論文リスト
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
この研究は、性能評価のためのより効率的な指標として、事前学習損失に焦点を当てている。
我々は、データソース間のFLOPに基づいて、ドメイン固有の事前学習損失を予測するために、電力法解析関数を拡張した。
我々は2層ニューラルネットワークを用いて、複数のドメイン固有の損失と下流性能の非線形関係をモデル化する。
論文 参考訳(メタデータ) (2024-10-11T04:57:48Z) - Sparse Low-Ranked Self-Attention Transformer for Remaining Useful Lifetime Prediction of Optical Fiber Amplifiers [0.0]
本稿では,新しい寿命予測手法としてSparse Low-ranked Self-Attention Transformer (SLAT)を提案する。
SLATはエンコーダ-デコーダアーキテクチャに基づいており、2つの並列動作エンコーダがセンサーと時間ステップの機能を抽出する。
注意行列と低ランクパラメトリゼーションにおけるスパーシティの実装は、過度な適合を減らし、一般化を増大させる。
論文 参考訳(メタデータ) (2024-09-22T09:48:45Z) - Spatio-temporal Attention-based Hidden Physics-informed Neural Network for Remaining Useful Life Prediction [1.8554335256160261]
STA-HPINN(spatatio-temporal Attention-based Hidden Physics-informed Neural Network)を導入する。
隠れた物理インフォームドニューラルネットワークを用いて、RULの進化を管理する次元物理機構を捉える。
このアプローチはベンチマークデータセットで検証され、最先端のメソッドと比較して、例外的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-20T21:10:18Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
超伝導量子ビットに対するモデルベース読み出し最適化を実証する。
我々は,残共振器光子から500nsの終端長と最小限の過剰リセット誤差で,キュービット当たり1.5%の誤差を観測した。
この技術は数百のキュービットに拡張でき、エラー訂正コードや短期アプリケーションの性能を高めるために使用される。
論文 参考訳(メタデータ) (2023-08-03T23:30:56Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Degradation Prediction of Semiconductor Lasers using Conditional
Variational Autoencoder [0.0]
本稿では, 特定の知識や物理モデルを用いることなく, 劣化傾向を予測できる新しいデータ駆動手法を提案する。
提案手法は、教師なし手法、条件付き変分オートエンコーダに基づいており、垂直キャビティ表面発光レーザ(VCSEL)と可変エッジ発光レーザ信頼性データを用いて検証されている。
実験結果から,(i)F1スコア95.3%,(ii)ベースラインMLに基づく異常検出技術に優れ,(iii)故障したデバイスを早期に予測して老化試験の短縮に役立てることにより,モデルが良好な劣化予測と一般化性能を達成できることが確認された。
論文 参考訳(メタデータ) (2022-11-05T08:10:11Z) - Machine Learning based Laser Failure Mode Detection [0.0]
本稿では,Long Short-Term Memory(LSTM)リカレントニューラルネットワークに基づくデータ駆動型故障検出手法を提案する。
24.41%の分類精度を達成し、LSTMベースのモデルは95.52%の精度を達成する。
論文 参考訳(メタデータ) (2022-03-19T09:46:19Z) - Reflective Fiber Faults Detection and Characterization Using
Long-Short-Term Memory [0.0]
本研究では,長い短期記憶(LSTM)に基づく新たな学習モデルを提案し,繊維反射欠陥の反射率を検出し,検出し,推定する。
実験の結果,提案手法は短時間で優れた検出能力と高精度な位置推定を実現することができた。
論文 参考訳(メタデータ) (2022-03-19T08:45:45Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。