Feature Selection for Classification with QAOA
- URL: http://arxiv.org/abs/2211.02861v1
- Date: Sat, 5 Nov 2022 09:28:53 GMT
- Title: Feature Selection for Classification with QAOA
- Authors: Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi
- Abstract summary: Feature selection is of great importance in Machine Learning, where it can be used to reduce the dimensionality of classification, ranking and prediction problems.
We consider in particular a quadratic feature selection problem that can be tackled with the Approximate Quantum Algorithm Optimization (QAOA), already employed in optimization.
In our experiments, we consider seven different real-world datasets with dimensionality up to 21 and run QAOA on both a quantum simulator and, for small datasets, the 7-qubit IBM (ibm-perth) quantum computer.
- Score: 11.516147824168732
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Feature selection is of great importance in Machine Learning, where it can be
used to reduce the dimensionality of classification, ranking and prediction
problems. The removal of redundant and noisy features can improve both the
accuracy and scalability of the trained models. However, feature selection is a
computationally expensive task with a solution space that grows
combinatorically. In this work, we consider in particular a quadratic feature
selection problem that can be tackled with the Quantum Approximate Optimization
Algorithm (QAOA), already employed in combinatorial optimization. First we
represent the feature selection problem with the QUBO formulation, which is
then mapped to an Ising spin Hamiltonian. Then we apply QAOA with the goal of
finding the ground state of this Hamiltonian, which corresponds to the optimal
selection of features. In our experiments, we consider seven different
real-world datasets with dimensionality up to 21 and run QAOA on both a quantum
simulator and, for small datasets, the 7-qubit IBM (ibm-perth) quantum
computer. We use the set of selected features to train a classification model
and evaluate its accuracy. Our analysis shows that it is possible to tackle the
feature selection problem with QAOA and that currently available quantum
devices can be used effectively. Future studies could test a wider range of
classification models as well as improve the effectiveness of QAOA by exploring
better performing optimizers for its classical step.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - Compact NSGA-II for Multi-objective Feature Selection [0.24578723416255746]
We define feature selection as a multi-objective binary optimization task with the objectives of maximizing classification accuracy and minimizing the number of selected features.
In order to select optimal features, we have proposed a binary Compact NSGA-II (CNSGA-II) algorithm.
To the best of our knowledge, this is the first compact multi-objective algorithm proposed for feature selection.
arXiv Detail & Related papers (2024-02-20T01:10:12Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Fair Feature Subset Selection using Multiobjective Genetic Algorithm [0.0]
We present a feature subset selection approach that improves both fairness and accuracy objectives.
We use statistical disparity as a fairness metric and F1-Score as a metric for model performance.
Our experiments on the most commonly used fairness benchmark datasets show that using the evolutionary algorithm we can effectively explore the trade-off between fairness and accuracy.
arXiv Detail & Related papers (2022-04-30T22:51:19Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Towards Explainable Exploratory Landscape Analysis: Extreme Feature
Selection for Classifying BBOB Functions [4.932130498861987]
We show that a surprisingly small number of features -- often less than four -- can suffice to achieve a 98% accuracy.
We show that the classification accuracy transfers to settings in which several instances are involved in training and testing.
arXiv Detail & Related papers (2021-02-01T10:04:28Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
We simulate the performance of QAOA applied to the Max-Cut problem and compare it with some of the best classical alternatives.
Because of the evolving QAOA computational complexity-theoretic guidance, we utilize a framework for the search for quantum advantage.
arXiv Detail & Related papers (2020-06-08T18:00:18Z) - A novel embedded min-max approach for feature selection in nonlinear
support vector machine classification [0.0]
We propose an embedded feature selection method based on a min-max optimization problem.
By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado.
The efficiency and usefulness of our approach are tested on several benchmark data sets.
arXiv Detail & Related papers (2020-04-21T09:40:38Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.