論文の概要: Learning the shape of protein micro-environments with a holographic
convolutional neural network
- arxiv url: http://arxiv.org/abs/2211.02936v1
- Date: Sat, 5 Nov 2022 16:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 19:17:20.048712
- Title: Learning the shape of protein micro-environments with a holographic
convolutional neural network
- Title(参考訳): ホログラフィック畳み込みニューラルネットワークによるタンパク質マイクロ環境の形状学習
- Authors: Michael N. Pun, Andrew Ivanov, Quinn Bellamy, Zachary Montague, Colin
LaMont, Philip Bradley, Jakub Otwinowski, Armita Nourmohammad
- Abstract要約: 本稿では,タンパク質のホログラフィック畳み込みニューラルネットワーク(H-CNN)を紹介する。
H-CNNは、タンパク質構造におけるアミノ酸の嗜好をモデル化するための、物理的に動機付けられた機械学習アプローチである。
タンパク質複合体の安定性や結合を含むタンパク質機能に対する突然変異の影響を正確に予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proteins play a central role in biology from immune recognition to brain
activity. While major advances in machine learning have improved our ability to
predict protein structure from sequence, determining protein function from
structure remains a major challenge. Here, we introduce Holographic
Convolutional Neural Network (H-CNN) for proteins, which is a physically
motivated machine learning approach to model amino acid preferences in protein
structures. H-CNN reflects physical interactions in a protein structure and
recapitulates the functional information stored in evolutionary data. H-CNN
accurately predicts the impact of mutations on protein function, including
stability and binding of protein complexes. Our interpretable computational
model for protein structure-function maps could guide design of novel proteins
with desired function.
- Abstract(参考訳): タンパク質は、免疫認識から脳活動まで生物学において中心的な役割を果たす。
機械学習の大きな進歩により、配列からタンパク質構造を予測する能力が向上したが、構造からタンパク質機能を決定することは大きな課題である。
本稿では,タンパク質構造におけるアミノ酸嗜好をモデル化するための,物理的に動機付けられた機械学習手法であるH-CNNを紹介する。
H-CNNはタンパク質構造における物理的相互作用を反映し、進化データに格納された機能情報を再カプセル化する。
H-CNNは、タンパク質複合体の安定性や結合を含むタンパク質機能に対する突然変異の影響を正確に予測する。
タンパク質構造関数マップの解釈可能な計算モデルにより,新規なタンパク質の設計が期待できる。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Long-context Protein Language Model [76.95505296417866]
言語モデル(LM)の自己教師による訓練は、有意義な表現の学習や創薬設計において、タンパク質配列に大きな成功を収めている。
ほとんどのタンパク質LMは、短い文脈長を持つ個々のタンパク質に基づいて訓練されたトランスフォーマーアーキテクチャに基づいている。
そこで我々は,選択的構造化状態空間モデルから構築した代替のタンパク質LMアーキテクチャであるBiMamba-Sに基づくLC-PLMを提案する。
また、第2段階のトレーニングのために、タンパク質-タンパク質相互作用グラフの文脈化を行うLC-PLM-Gも導入した。
論文 参考訳(メタデータ) (2024-10-29T16:43:28Z) - ProteinRPN: Towards Accurate Protein Function Prediction with Graph-Based Region Proposals [4.525216077859531]
本稿では,タンパク質機能予測のためのタンパク質領域提案ネットワーク(ProteinRPN)を紹介する。
proteinRPNは、階層型ノードドロッププーリング層を通じて洗練される潜在的な機能領域(アンカー)を識別する。
予測された機能ノードの表現は、注意機構を使用して強化され、グラフマルチセット変換器に入力される。
論文 参考訳(メタデータ) (2024-09-01T04:40:04Z) - Advanced atom-level representations for protein flexibility prediction utilizing graph neural networks [0.0]
我々は,タンパク質の原子レベルでの表現を学習し,タンパク質3D構造からB因子を予測するグラフニューラルネットワーク(GNN)を提案する。
Meta-GNNモデルは、4k以上のタンパク質の大規模かつ多様なテストセット上での相関係数0.71を達成する。
論文 参考訳(メタデータ) (2024-08-22T16:15:13Z) - GOProteinGNN: Leveraging Protein Knowledge Graphs for Protein Representation Learning [27.192150057715835]
GOProteinGNNは、タンパク質知識グラフ情報を統合することにより、タンパク質言語モデルを強化する新しいアーキテクチャである。
我々のアプローチは、個々のアミノ酸レベルとタンパク質レベルの両方で情報の統合を可能にし、包括的で効果的な学習プロセスを可能にします。
論文 参考訳(メタデータ) (2024-07-31T17:54:22Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
本稿では,背骨化学および側鎖生物物理情報をタンパク質分類タスクに組み込む新しい意味データ拡張手法を提案する。
具体的には, 分子生物学的, 二次構造, 化学結合, およびタンパク質のイオン特性を活用し, 分類作業を容易にする。
論文 参考訳(メタデータ) (2024-03-21T13:27:57Z) - Structure-Informed Protein Language Model [38.019425619750265]
本稿では、構造情報をタンパク質言語モデルに抽出するためのリモートホモロジー検出の統合について紹介する。
この構造インフォームドトレーニングが下流タンパク質機能予測タスクに与える影響を評価する。
論文 参考訳(メタデータ) (2024-02-07T09:32:35Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-05-06T19:10:19Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。