論文の概要: A Latent Diffusion Model for Protein Structure Generation
- arxiv url: http://arxiv.org/abs/2305.04120v2
- Date: Wed, 6 Dec 2023 23:53:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 19:01:55.722465
- Title: A Latent Diffusion Model for Protein Structure Generation
- Title(参考訳): タンパク質構造生成のための潜時拡散モデル
- Authors: Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael McThrow, Tao
Komikado, Koji Maruhashi, Kanji Uchino, Xiaoning Qian, Shuiwang Ji
- Abstract要約: 本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
- 参考スコア(独自算出の注目度): 50.74232632854264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proteins are complex biomolecules that perform a variety of crucial functions
within living organisms. Designing and generating novel proteins can pave the
way for many future synthetic biology applications, including drug discovery.
However, it remains a challenging computational task due to the large modeling
space of protein structures. In this study, we propose a latent diffusion model
that can reduce the complexity of protein modeling while flexibly capturing the
distribution of natural protein structures in a condensed latent space.
Specifically, we propose an equivariant protein autoencoder that embeds
proteins into a latent space and then uses an equivariant diffusion model to
learn the distribution of the latent protein representations. Experimental
results demonstrate that our method can effectively generate novel protein
backbone structures with high designability and efficiency. The code will be
made publicly available at
https://github.com/divelab/AIRS/tree/main/OpenProt/LatentDiff
- Abstract(参考訳): タンパク質は生体内で様々な重要な機能を果たす複雑な生体分子である。
新規タンパク質の設計と生成は、創薬を含む多くの未来の合成生物学応用の道を開くことができる。
しかし、タンパク質構造の大規模なモデリング空間のため、依然として難しい計算課題である。
本研究では, 凝縮した潜在空間における自然タンパク質構造の分布を柔軟に捉えながら, タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
具体的には,タンパク質を潜伏空間に埋め込んだ同変タンパク質オートエンコーダを提案し,同変拡散モデルを用いて潜伏タンパク質表現の分布を学習する。
実験の結果, 新規なタンパク質骨格構造を高い設計性と効率で効率的に生成できることが判明した。
コードはhttps://github.com/divelab/AIRS/tree/main/OpenProt/LatentDiffで公開されます。
関連論文リスト
- Long-context Protein Language Model [76.95505296417866]
言語モデル(LM)の自己教師による訓練は、有意義な表現の学習や創薬設計において、タンパク質配列に大きな成功を収めている。
ほとんどのタンパク質LMは、短い文脈長を持つ個々のタンパク質に基づいて訓練されたトランスフォーマーアーキテクチャに基づいている。
そこで我々は,選択的構造化状態空間モデルから構築した代替のタンパク質LMアーキテクチャであるBiMamba-Sに基づくLC-PLMを提案する。
また、第2段階のトレーニングのために、タンパク質-タンパク質相互作用グラフの文脈化を行うLC-PLM-Gも導入した。
論文 参考訳(メタデータ) (2024-10-29T16:43:28Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Generating Novel, Designable, and Diverse Protein Structures by
Equivariantly Diffusing Oriented Residue Clouds [0.0]
構造に基づくタンパク質設計は、設計可能で、新規で多様な構造を見つけることを目的としている。
生成モデルは、複雑なデータの低次元構造を暗黙的に学習することで、魅力的な代替手段を提供する。
我々は,3次元空間における配向参照フレームの雲を用いて離散時間拡散を行うタンパク質構造の生成モデルであるGenieを開発する。
論文 参考訳(メタデータ) (2023-01-29T16:44:19Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
機械学習ベースのタンパク質工学の長年の目標は、新しい突然変異の発見を加速することである。
本稿では,シリコにおけるタンパク質の進化のためのサンプリングフレームワークについて紹介する。
これらのモデルを構成することで、未知の突然変異を評価し、機能的タンパク質を含む可能性のある配列空間の領域を探索する能力を向上させることを目指している。
論文 参考訳(メタデータ) (2022-12-20T00:26:23Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
バイオエンジニアリングにおける重要な課題は、特定の3D構造と標的機能を可能にする化学的性質を持つタンパク質を設計することである。
タンパク質の構造と配列の両方の生成モデルを導入し、従来の分子生成モデルよりもはるかに大きなスケールで操作できる。
論文 参考訳(メタデータ) (2022-05-26T16:10:09Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Deep Generative Modeling for Protein Design [0.0]
ディープラーニングアプローチは、画像分類や自然言語処理などの分野で画期的な成果を上げている。
タンパク質の遺伝子モデルが開発され、既知のタンパク質配列を全て含む、特定のタンパク質ファミリーをモデル化する、または個々のタンパク質のダイナミクスを外挿する。
本稿では、タンパク質のモデリングに最も成功した5種類の生成モデルについて論じ、ガイドされたタンパク質設計のためのフレームワークを提供する。
論文 参考訳(メタデータ) (2021-08-31T14:38:26Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。