WeakIdent: Weak formulation for Identifying Differential Equations using
Narrow-fit and Trimming
- URL: http://arxiv.org/abs/2211.03134v1
- Date: Sun, 6 Nov 2022 14:33:22 GMT
- Title: WeakIdent: Weak formulation for Identifying Differential Equations using
Narrow-fit and Trimming
- Authors: Mengyi Tang, Wenjing Liao, Rachel Kuske and Sung Ha Kang
- Abstract summary: We propose a general and robust framework to recover differential equations using a weak formulation.
For each sparsity level, Subspace Pursuit is utilized to find an initial set of support from the large dictionary.
The proposed method gives a robust recovery of the coefficients, and a significant denoising effect which can handle up to $100%$ noise-to-signal ratio.
- Score: 5.027714423258538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven identification of differential equations is an interesting but
challenging problem, especially when the given data are corrupted by noise.
When the governing differential equation is a linear combination of various
differential terms, the identification problem can be formulated as solving a
linear system, with the feature matrix consisting of linear and nonlinear terms
multiplied by a coefficient vector. This product is equal to the time
derivative term, and thus generates dynamical behaviors. The goal is to
identify the correct terms that form the equation to capture the dynamics of
the given data. We propose a general and robust framework to recover
differential equations using a weak formulation, for both ordinary and partial
differential equations (ODEs and PDEs). The weak formulation facilitates an
efficient and robust way to handle noise. For a robust recovery against noise
and the choice of hyper-parameters, we introduce two new mechanisms, narrow-fit
and trimming, for the coefficient support and value recovery, respectively. For
each sparsity level, Subspace Pursuit is utilized to find an initial set of
support from the large dictionary. Then, we focus on highly dynamic regions
(rows of the feature matrix), and error normalize the feature matrix in the
narrow-fit step. The support is further updated via trimming of the terms that
contribute the least. Finally, the support set of features with the smallest
Cross-Validation error is chosen as the result. A comprehensive set of
numerical experiments are presented for both systems of ODEs and PDEs with
various noise levels. The proposed method gives a robust recovery of the
coefficients, and a significant denoising effect which can handle up to $100\%$
noise-to-signal ratio for some equations. We compare the proposed method with
several state-of-the-art algorithms for the recovery of differential equations.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
The proposed method is demonstrated to discover various differential equations at various noise levels, including three-dimensional, fourth-order, and stiff equations.
The parameter estimation converges accurately to the true values with a small coefficient of variation, suggesting robustness to the noise.
arXiv Detail & Related papers (2024-10-13T21:48:51Z) - Weak Collocation Regression for Inferring Stochastic Dynamics with
L\'{e}vy Noise [8.15076267771005]
We propose a weak form of the Fokker-Planck (FP) equation for extracting dynamics with L'evy noise.
Our approach can simultaneously distinguish mixed noise types, even in multi-dimensional problems.
arXiv Detail & Related papers (2024-03-13T06:54:38Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
We propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations.
We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently.
arXiv Detail & Related papers (2022-06-21T17:59:20Z) - Online Weak-form Sparse Identification of Partial Differential Equations [0.5156484100374058]
This paper presents an online algorithm for identification of partial differential equations (PDEs) based on the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy)
The core of the method combines a weak-form discretization of candidate PDEs with an online proximal gradient descent approach to the sparse regression problem.
arXiv Detail & Related papers (2022-03-08T10:11:09Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
We propose a numerical scheme based on Random Projection Neural Networks (RPNN) for the solution of Ordinary Differential Equations (ODEs)
We show that our proposed scheme yields good numerical approximation accuracy without being affected by the stiffness, thus outperforming in same cases the textttode45 and textttode15s functions.
arXiv Detail & Related papers (2021-08-03T15:49:17Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Weak SINDy For Partial Differential Equations [0.0]
We extend our Weak SINDy (WSINDy) framework to the setting of partial differential equations (PDEs)
The elimination of pointwise derivative approximations via the weak form enables effective machine-precision recovery of model coefficients from noise-free data.
We demonstrate WSINDy's robustness, speed and accuracy on several challenging PDEs.
arXiv Detail & Related papers (2020-07-06T16:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.