Online Weak-form Sparse Identification of Partial Differential Equations
- URL: http://arxiv.org/abs/2203.03979v1
- Date: Tue, 8 Mar 2022 10:11:09 GMT
- Title: Online Weak-form Sparse Identification of Partial Differential Equations
- Authors: Daniel A. Messenger, Emiliano Dall'Anese and David M. Bortz
- Abstract summary: This paper presents an online algorithm for identification of partial differential equations (PDEs) based on the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy)
The core of the method combines a weak-form discretization of candidate PDEs with an online proximal gradient descent approach to the sparse regression problem.
- Score: 0.5156484100374058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an online algorithm for identification of partial
differential equations (PDEs) based on the weak-form sparse identification of
nonlinear dynamics algorithm (WSINDy). The algorithm is online in a sense that
if performs the identification task by processing solution snapshots that
arrive sequentially. The core of the method combines a weak-form discretization
of candidate PDEs with an online proximal gradient descent approach to the
sparse regression problem. In particular, we do not regularize the
$\ell_0$-pseudo-norm, instead finding that directly applying its proximal
operator (which corresponds to a hard thresholding) leads to efficient online
system identification from noisy data. We demonstrate the success of the method
on the Kuramoto-Sivashinsky equation, the nonlinear wave equation with
time-varying wavespeed, and the linear wave equation, in one, two, and three
spatial dimensions, respectively. In particular, our examples show that the
method is capable of identifying and tracking systems with coefficients that
vary abruptly in time, and offers a streaming alternative to problems in higher
dimensions.
Related papers
- Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
The proposed method is demonstrated to discover various differential equations at various noise levels, including three-dimensional, fourth-order, and stiff equations.
The parameter estimation converges accurately to the true values with a small coefficient of variation, suggesting robustness to the noise.
arXiv Detail & Related papers (2024-10-13T21:48:51Z) - A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
We present a novel forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward differential equations (BSDEs)
Motivated by the fact that differential deep learning can efficiently approximate the labels and their derivatives with respect to inputs, we transform the BSDE problem into a differential deep learning problem.
The main idea of our algorithm is to discretize the integrals using the Euler-Maruyama method and approximate the unknown discrete solution triple using three deep neural networks.
arXiv Detail & Related papers (2024-08-10T19:34:03Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - WeakIdent: Weak formulation for Identifying Differential Equations using
Narrow-fit and Trimming [5.027714423258538]
We propose a general and robust framework to recover differential equations using a weak formulation.
For each sparsity level, Subspace Pursuit is utilized to find an initial set of support from the large dictionary.
The proposed method gives a robust recovery of the coefficients, and a significant denoising effect which can handle up to $100%$ noise-to-signal ratio.
arXiv Detail & Related papers (2022-11-06T14:33:22Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - A Deep Gradient Correction Method for Iteratively Solving Linear Systems [5.744903762364991]
We present a novel approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations.
Our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations.
arXiv Detail & Related papers (2022-05-22T06:40:38Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
We propose an offline method that relies on the concept of graph signal stationarity.
Our detector comes with a proof of a non-asymptotic inequality oracle.
arXiv Detail & Related papers (2020-06-18T15:51:38Z) - Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data [2.4431531175170362]
In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously.
A trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data.
Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library.
A two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients.
arXiv Detail & Related papers (2020-05-16T09:09:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.