論文の概要: Personalizing Sustainable Agriculture with Causal Machine Learning
- arxiv url: http://arxiv.org/abs/2211.03179v1
- Date: Sun, 6 Nov 2022 17:14:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 15:52:42.995903
- Title: Personalizing Sustainable Agriculture with Causal Machine Learning
- Title(参考訳): 因果機械学習による持続可能な農業のパーソナライズ
- Authors: Georgios Giannarakis, Vasileios Sitokonstantinou, Roxanne Suzette
Lorilla, Charalampos Kontoes
- Abstract要約: 気候変動に対処し、人口増加に対応するためには、世界の作物生産が強化されなければならない。
農業の「持続可能強度」を達成するためには、炭素エミッターから炭素シンクに転換することが最優先事項である。
リトアニアの土壌有機炭素含有量に及ぼす持続的プラクティスの不均一性の影響を推定した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To fight climate change and accommodate the increasing population, global
crop production has to be strengthened. To achieve the "sustainable
intensification" of agriculture, transforming it from carbon emitter to carbon
sink is a priority, and understanding the environmental impact of agricultural
management practices is a fundamental prerequisite to that. At the same time,
the global agricultural landscape is deeply heterogeneous, with differences in
climate, soil, and land use inducing variations in how agricultural systems
respond to farmer actions. The "personalization" of sustainable agriculture
with the provision of locally adapted management advice is thus a necessary
condition for the efficient uplift of green metrics, and an integral
development in imminent policies. Here, we formulate personalized sustainable
agriculture as a Conditional Average Treatment Effect estimation task and use
Causal Machine Learning for tackling it. Leveraging climate data, land use
information and employing Double Machine Learning, we estimate the
heterogeneous effect of sustainable practices on the field-level Soil Organic
Carbon content in Lithuania. We thus provide a data-driven perspective for
targeting sustainable practices and effectively expanding the global carbon
sink.
- Abstract(参考訳): 気候変動と闘い、人口増加に対応するためには、世界の作物生産を強化する必要がある。
農業の「持続可能強化」を達成するためには、炭素エミッターから炭素シンクへの転換が最優先であり、農業経営実践の環境への影響を理解することがその基本的な前提条件である。
同時に、世界の農業の景観は、気候、土壌、土地利用の違いが農業システムの農業行動に対する反応の多様性を誘発しているため、非常に異質である。
持続的農業の「個人化」と地域的適応型経営アドバイスは、グリーンメトリクスの効率的な上昇と差し迫った政策の不可欠な発展のために必要条件である。
ここでは, 持続可能農業を条件付き平均処理効果推定タスクとして定式化し, 因果機械学習を用いて対処する。
気候データ,土地利用情報,ダブル機械学習を用いて,リトアニアの土壌有機炭素含有量に及ぼす持続的プラクティスの不均一な効果を推定した。
これにより,持続可能な実践を目標とし,グローバルカーボンシンクを効果的に拡大するためのデータ駆動視点を提供する。
関連論文リスト
- Enabling Adoption of Regenerative Agriculture through Soil Carbon Copilots [11.63518622433838]
我々は、土壌の健康と再生の実践に関する洞察を提供するために、AI駆動の土壌有機炭素コパイロットを導入する。
私たちのデータには、極端な気象イベントデータ、ファームマネジメントデータ、SOC予測が含まれています。
カリフォルニア郡全体で農業の実践を比較すると、多様な農業活動が耕作の悪影響を緩和する証拠が見つかる。
論文 参考訳(メタデータ) (2024-11-25T19:11:41Z) - Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - The unrealized potential of agroforestry for an emissions-intensive agricultural commodity [48.652015514785546]
機械学習を用いて、西アフリカ地域全体での日陰木カバーと炭素ストックの見積もりを生成します。
既存の陰木カバーは低く、空間的に気候の脅威と一致していないことが判明した。
しかし、このセクターが毎年高い炭素フットプリントのかなりの割合とバランスをとるという、巨大な非現実的な可能性も見出されています。
論文 参考訳(メタデータ) (2024-10-28T10:02:32Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Intelligent Agricultural Greenhouse Control System Based on Internet of
Things and Machine Learning [0.0]
本研究は,モノのインターネット(IoT)と機械学習の融合に根ざした,高度な農業用温室制御システムを概念化し,実行しようとする試みである。
その結果、作物の生育効率と収量が向上し、資源の浪費が減少する。
論文 参考訳(メタデータ) (2024-02-14T09:07:00Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Understanding the impacts of crop diversification in the context of
climate change: a machine learning approach [0.0]
気候変動の文脈における作物の多様化が生産性に与える影響について検討する。
作物の多様化は作物の一次生産性を著しく向上させ、2.8%増加させた。
温暖で乾燥しやすい気候では、作物の多様化は有望な適応可能性を示すと結論付けている。
論文 参考訳(メタデータ) (2023-07-17T16:32:49Z) - Towards assessing agricultural land suitability with causal machine
learning [0.0]
我々は,ベルギーのフランダース地域における作物の回転と景観作物の多様性が純生産性に及ぼす影響を因果機械学習を用いて推定する。
植生の多様性がNPPに悪影響を及ぼすのに対して, 作物の回転の影響は重要でないことが判明した。
論文 参考訳(メタデータ) (2022-04-27T14:13:47Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
ファームパーセル・デライン化は、気候変動政策の開発と管理において重要なカダストラルデータを提供する。
このデータは、極端な気象災害に伴う損害後の補償を評価するための農業保険セクターにも有用である。
衛星画像の利用は、農場の区画整理作業を行うためのスケーラブルで費用対効果の高い方法である。
論文 参考訳(メタデータ) (2020-04-11T19:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。