Gauge Equivariant Neural Networks for 2+1D U(1) Gauge Theory Simulations
in Hamiltonian Formulation
- URL: http://arxiv.org/abs/2211.03198v1
- Date: Sun, 6 Nov 2022 18:38:19 GMT
- Title: Gauge Equivariant Neural Networks for 2+1D U(1) Gauge Theory Simulations
in Hamiltonian Formulation
- Authors: Di Luo, Shunyue Yuan, James Stokes, Bryan K. Clark
- Abstract summary: In quantum simulations of lattice gauge theory, an important step is to construct a wave function that obeys gauge symmetry.
We have developed gauge equivariant neural network wave function techniques for simulating continuous-variable quantum lattice gauge theories.
- Score: 1.7549208519206603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gauge Theory plays a crucial role in many areas in science, including high
energy physics, condensed matter physics and quantum information science. In
quantum simulations of lattice gauge theory, an important step is to construct
a wave function that obeys gauge symmetry. In this paper, we have developed
gauge equivariant neural network wave function techniques for simulating
continuous-variable quantum lattice gauge theories in the Hamiltonian
formulation. We have applied the gauge equivariant neural network approach to
find the ground state of 2+1-dimensional lattice gauge theory with U(1) gauge
group using variational Monte Carlo. We have benchmarked our approach against
the state-of-the-art complex Gaussian wave functions, demonstrating improved
performance in the strong coupling regime and comparable results in the weak
coupling regime.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Digital quantum simulation of a (1+1)D SU(2) lattice gauge theory with ion qudits [0.0]
We present a quantum simulation strategy for a (1+1)D SU(2) non-abelian lattice gauge theory with dynamical matter.
We numerically show that this model, albeit simple, can manifest physically-relevant properties specific to non-abelian field theories.
arXiv Detail & Related papers (2024-02-12T19:00:08Z) - Scalable, ab initio protocol for quantum simulating SU($N$)$\times$U(1) Lattice Gauge Theories [0.0]
We propose a protocol for the scalable quantum simulation of SU($N$)$times$U(1) lattice gauge theories with alkaline-earth like atoms in optical lattices in both one- and two-dimensional systems.
The protocol exploits the combination of naturally occurring SU($N$) pseudo-spin symmetry and strong inter-orbital interactions that is unique to such atomic species.
arXiv Detail & Related papers (2023-10-12T18:09:21Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Gauge equivariant neural networks for quantum lattice gauge theories [2.14192068078728]
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials.
Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced.
arXiv Detail & Related papers (2020-12-09T18:57:02Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Cold Atom Quantum Simulator for String and Hadron Dynamics in
Non-Abelian Lattice Gauge Theory [0.0]
Scheme calls for the realization of a two-state ultracold fermionic system in a 1-dimensional bipartite lattice.
Being based on novel loop string hadron formalism of SU(2) lattice gauge theory, this simulation technique is completely SU(2) invariant.
arXiv Detail & Related papers (2020-09-29T12:39:14Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.