Scalable, ab initio protocol for quantum simulating SU($N$)$\times$U(1) Lattice Gauge Theories
- URL: http://arxiv.org/abs/2310.08643v3
- Date: Thu, 9 May 2024 21:55:25 GMT
- Title: Scalable, ab initio protocol for quantum simulating SU($N$)$\times$U(1) Lattice Gauge Theories
- Authors: Federica Maria Surace, Pierre Fromholz, Francesco Scazza, Marcello Dalmonte,
- Abstract summary: We propose a protocol for the scalable quantum simulation of SU($N$)$times$U(1) lattice gauge theories with alkaline-earth like atoms in optical lattices in both one- and two-dimensional systems.
The protocol exploits the combination of naturally occurring SU($N$) pseudo-spin symmetry and strong inter-orbital interactions that is unique to such atomic species.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a protocol for the scalable quantum simulation of SU($N$)$\times$U(1) lattice gauge theories with alkaline-earth like atoms in optical lattices in both one- and two-dimensional systems. The protocol exploits the combination of naturally occurring SU($N$) pseudo-spin symmetry and strong inter-orbital interactions that is unique to such atomic species. A detailed ab initio study of the microscopic dynamics shows how gauge invariance emerges in an accessible parameter regime, and allows us to identify the main challenges in the simulation of such theories. We provide quantitative results about the requirements in terms of experimental stability in relation to observing gauge invariant dynamics, a key element for a deeper analysis on the functioning of such class of theories in both quantum simulators and computers.
Related papers
- Variational quantum simulation of U(1) lattice gauge theories with qudit
systems [0.0]
We map D-dimensional Abelian lattice gauge theories onto qudit systems with local interactions for arbitrary D.
Our proposal can serve as a way of simulating lattice gauge theories, particularly in higher spatial dimensions, with minimal resources.
arXiv Detail & Related papers (2023-07-27T20:04:55Z) - $Ab\,initio$ derivation of lattice gauge theory dynamics for cold gases
in optical lattices [0.0]
We introduce a method for quantum simulation of U$(1)$ lattice gauge theories coupled to matter, utilizing alkaline-earth(-like) atoms in state-dependent optical lattices.
We focus on a realistic and robust implementation that utilizes the long-lived metastable clock state available in alkaline-earth(-like) atomic species.
arXiv Detail & Related papers (2023-01-09T16:09:08Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of
Gauge Theories [3.4075669047370125]
We show how a tunable topological $theta$-term can be added to a prototype theory with gauge symmetry.
The model can be realized experimentally in a single-species Bose--Hubbard model in an optical superlattice with three different spatial periods.
This work opens the door towards studying the rich physics of topological gauge-theory terms in large-scale cold-atom quantum simulators.
arXiv Detail & Related papers (2022-04-13T18:00:01Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Cold Atom Quantum Simulator for String and Hadron Dynamics in
Non-Abelian Lattice Gauge Theory [0.0]
Scheme calls for the realization of a two-state ultracold fermionic system in a 1-dimensional bipartite lattice.
Being based on novel loop string hadron formalism of SU(2) lattice gauge theory, this simulation technique is completely SU(2) invariant.
arXiv Detail & Related papers (2020-09-29T12:39:14Z) - Entanglement Hamiltonian Tomography in Quantum Simulation [0.0]
Entanglement in quantum simulators is an outstanding challenge in today's era of intermediate scale quantum devices.
Here we discuss an efficient tomographic protocol for reconstructing reduced density matrices and entanglement spectra for spin systems.
We show the validity and efficiency of the protocol for a long-range Ising model in 1D using numerical simulations.
arXiv Detail & Related papers (2020-09-18T18:12:22Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.