Computing and Exploiting Document Structure to Improve Unsupervised
Extractive Summarization of Legal Case Decisions
- URL: http://arxiv.org/abs/2211.03229v1
- Date: Sun, 6 Nov 2022 22:20:42 GMT
- Title: Computing and Exploiting Document Structure to Improve Unsupervised
Extractive Summarization of Legal Case Decisions
- Authors: Yang Zhong, Diane Litman
- Abstract summary: We propose an unsupervised graph-based ranking model that uses a reweighting algorithm to exploit document structure.
Results on the Canadian Legal Case Law dataset show that our proposed method outperforms several strong baselines.
- Score: 7.99536002595393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Though many algorithms can be used to automatically summarize legal case
decisions, most fail to incorporate domain knowledge about how important
sentences in a legal decision relate to a representation of its document
structure. For example, analysis of a legal case summarization dataset
demonstrates that sentences serving different types of argumentative roles in
the decision appear in different sections of the document. In this work, we
propose an unsupervised graph-based ranking model that uses a reweighting
algorithm to exploit properties of the document structure of legal case
decisions. We also explore the impact of using different methods to compute the
document structure. Results on the Canadian Legal Case Law dataset show that
our proposed method outperforms several strong baselines.
Related papers
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - Query-driven Relevant Paragraph Extraction from Legal Judgments [1.2562034805037443]
Legal professionals often grapple with navigating lengthy legal judgements to pinpoint information that directly address their queries.
This paper focus on this task of extracting relevant paragraphs from legal judgements based on the query.
We construct a specialized dataset for this task from the European Court of Human Rights (ECtHR) using the case law guides.
arXiv Detail & Related papers (2024-03-31T08:03:39Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness.
Existing SCR datasets only focus on the fact description section when judging the similarity between cases.
We present M, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations.
arXiv Detail & Related papers (2023-10-24T08:17:11Z) - An Intent Taxonomy of Legal Case Retrieval [43.22489520922202]
Legal case retrieval is a special Information Retrieval(IR) task focusing on legal case documents.
We present a novel hierarchical intent taxonomy of legal case retrieval.
We reveal significant differences in user behavior and satisfaction under different search intents in legal case retrieval.
arXiv Detail & Related papers (2023-07-25T07:27:32Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Legal Case Document Summarization: Extractive and Abstractive Methods
and their Evaluation [11.502115682980559]
Summarization of legal case judgement documents is a challenging problem in Legal NLP.
Not much analyses exist on how different families of summarization models perform when applied to legal case documents.
arXiv Detail & Related papers (2022-10-14T05:43:08Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Incorporating Domain Knowledge for Extractive Summarization of Legal
Case Documents [7.6340456946456605]
We propose an unsupervised summarization algorithm DELSumm for summarizing legal case documents.
Our proposed algorithm outperforms several supervised summarization models that are trained over thousands of document-summary pairs.
arXiv Detail & Related papers (2021-06-30T08:06:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.