Deep Causal Learning: Representation, Discovery and Inference
- URL: http://arxiv.org/abs/2211.03374v1
- Date: Mon, 7 Nov 2022 09:00:33 GMT
- Title: Deep Causal Learning: Representation, Discovery and Inference
- Authors: Zizhen Deng, Xiaolong Zheng, Hu Tian, and Daniel Dajun Zeng
- Abstract summary: This article comprehensively reviews how deep learning can contribute to causal learning.
We point out that deep causal learning is important for the theoretical extension and application expansion of causal science.
- Score: 4.667493820893912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal learning has attracted much attention in recent years because
causality reveals the essential relationship between things and indicates how
the world progresses. However, there are many problems and bottlenecks in
traditional causal learning methods, such as high-dimensional unstructured
variables, combinatorial optimization problems, unknown intervention,
unobserved confounders, selection bias and estimation bias. Deep causal
learning, that is, causal learning based on deep neural networks, brings new
insights for addressing these problems. While many deep learning-based causal
discovery and causal inference methods have been proposed, there is a lack of
reviews exploring the internal mechanism of deep learning to improve causal
learning. In this article, we comprehensively review how deep learning can
contribute to causal learning by addressing conventional challenges from three
aspects: representation, discovery, and inference. We point out that deep
causal learning is important for the theoretical extension and application
expansion of causal science and is also an indispensable part of general
artificial intelligence. We conclude the article with a summary of open issues
and potential directions for future work.
Related papers
- Not All Explanations for Deep Learning Phenomena Are Equally Valuable [58.7010466783654]
We argue that there is little evidence to suggest that counterintuitive phenomena appear in real-world applications.<n>These include double descent, grokking, and the lottery ticket hypothesis.<n>We propose practical recommendations for future research, aiming to ensure that progress on deep learning phenomena is well aligned with the ultimate pragmatic goal of progress in the broader field of deep learning.
arXiv Detail & Related papers (2025-06-29T15:18:56Z) - A Survey on State-of-the-art Deep Learning Applications and Challenges [0.0]
Building a deep learning model is challenging due to the algorithm's complexity and the dynamic nature of real-world problems.
This study aims to comprehensively review the state-of-the-art deep learning models in computer vision, natural language processing, time series analysis and pervasive computing.
arXiv Detail & Related papers (2024-03-26T10:10:53Z) - Causal Reinforcement Learning: A Survey [57.368108154871]
Reinforcement learning is an essential paradigm for solving sequential decision problems under uncertainty.
One of the main obstacles is that reinforcement learning agents lack a fundamental understanding of the world.
Causality offers a notable advantage as it can formalize knowledge in a systematic manner.
arXiv Detail & Related papers (2023-07-04T03:00:43Z) - Causal Deep Learning [77.49632479298745]
Causality has the potential to transform the way we solve real-world problems.
But causality often requires crucial assumptions which cannot be tested in practice.
We propose a new way of thinking about causality -- we call this causal deep learning.
arXiv Detail & Related papers (2023-03-03T19:19:18Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
We introduce a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories.
We elucidate the current application domains and provide insight into promising prospects for future research.
arXiv Detail & Related papers (2023-02-04T04:54:30Z) - Theoretical Perspectives on Deep Learning Methods in Inverse Problems [115.93934028666845]
We focus on generative priors, untrained neural network priors, and unfolding algorithms.
In addition to summarizing existing results in these topics, we highlight several ongoing challenges and open problems.
arXiv Detail & Related papers (2022-06-29T02:37:50Z) - Optimism in the Face of Adversity: Understanding and Improving Deep
Learning through Adversarial Robustness [63.627760598441796]
We provide an in-depth review of the field of adversarial robustness in deep learning.
We highlight the intuitive connection between adversarial examples and the geometry of deep neural networks.
We provide an overview of the main emerging applications of adversarial robustness beyond security.
arXiv Detail & Related papers (2020-10-19T16:03:46Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z) - Structure preserving deep learning [1.2263454117570958]
deep learning has risen to the foreground as a topic of massive interest.
There are multiple challenging mathematical problems involved in applying deep learning.
A growing effort to mathematically understand the structure in existing deep learning methods.
arXiv Detail & Related papers (2020-06-05T10:59:09Z) - A Survey of Deep Learning for Scientific Discovery [13.372738220280317]
We have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks.
The amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity.
This suggests many exciting opportunities for deep learning applications in scientific settings.
arXiv Detail & Related papers (2020-03-26T06:16:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.