論文の概要: Exploiting Transformer-based Multitask Learning for the Detection of
Media Bias in News Articles
- arxiv url: http://arxiv.org/abs/2211.03491v1
- Date: Mon, 7 Nov 2022 12:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 17:04:44.719272
- Title: Exploiting Transformer-based Multitask Learning for the Detection of
Media Bias in News Articles
- Title(参考訳): ニュース記事中のメディアバイアス検出のためのトランスフォーマーに基づくマルチタスク学習
- Authors: Timo Spinde, Jan-David Krieger, Terry Ruas, Jelena Mitrovi\'c, Franz
G\"otz-Hahn, Akiko Aizawa, and Bela Gipp
- Abstract要約: メディアバイアスを検出するために,マルチタスク学習を用いて学習したトランスフォーマーに基づくディープラーニングアーキテクチャを提案する。
我々の最高のパフォーマンス実装は、マクロ$F_1$の0.776を実現しています。
- 参考スコア(独自算出の注目度): 21.960154864540282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Media has a substantial impact on the public perception of events. A
one-sided or polarizing perspective on any topic is usually described as media
bias. One of the ways how bias in news articles can be introduced is by
altering word choice. Biased word choices are not always obvious, nor do they
exhibit high context-dependency. Hence, detecting bias is often difficult. We
propose a Transformer-based deep learning architecture trained via Multi-Task
Learning using six bias-related data sets to tackle the media bias detection
problem. Our best-performing implementation achieves a macro $F_{1}$ of 0.776,
a performance boost of 3\% compared to our baseline, outperforming existing
methods. Our results indicate Multi-Task Learning as a promising alternative to
improve existing baseline models in identifying slanted reporting.
- Abstract(参考訳): メディアはイベントに対する大衆の認識に大きな影響を与えている。
任意の話題に対する片面的あるいは偏りのある視点は、通常、メディアバイアスとして記述される。
ニュース記事に偏見を導入する方法の1つは、単語の選択を変えることである。
バイアスドワードの選択は必ずしも明確ではないし、文脈依存度も高い。
したがって、バイアスを検出することはしばしば困難である。
本稿では,メディアバイアス検出問題に対処する6つのバイアス関連データセットを用いて,マルチタスク学習を用いて学習したトランスフォーマーに基づくディープラーニングアーキテクチャを提案する。
最もパフォーマンスの高い実装は 0.776 のマクロ $f_{1}$ を達成し、ベースラインと比較してパフォーマンスが 3\% 向上し、既存のメソッドよりも優れています。
以上の結果から,マルチタスク学習は,既存のベースラインモデルを改善するための有望な代替手段であることが示唆された。
関連論文リスト
- Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions [0.7249731529275342]
本稿では,最近発表されたニュースメディアの信頼性評価手法の拡張を提案する。
大規模ニュースメディアハイパーリンクグラフ上での4つの強化学習戦略の分類性能を評価する。
本実験は,2つの難解なバイアス記述子,事実報告と政治的偏見を対象とし,情報源メディアレベルでの大幅な性能向上を示した。
論文 参考訳(メタデータ) (2024-10-23T08:18:26Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
近年の研究では、事前学習言語モデル(PLM)が、事実知識抽出において「急激なバイアス」に悩まされていることが示されている。
本稿では,突発バイアスを徹底的に調査し緩和することにより,既存のベンチマークの信頼性を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-03-15T02:04:35Z) - Mitigating Bias for Question Answering Models by Tracking Bias Influence [84.66462028537475]
本稿では,複数選択QAモデルのバイアスを軽減するためのBMBIを提案する。
バイアスのある例から学んだ場合、モデルがよりバイアスに傾くように傾くという直感に基づいて、クエリインスタンスのバイアスレベルを測定します。
本手法は,複数のバイアスカテゴリにまたがる複数のQA定式化に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-10-13T00:49:09Z) - Introducing MBIB -- the first Media Bias Identification Benchmark Task
and Dataset Collection [24.35462897801079]
我々は,メディアバイアス識別ベンチマーク(MBIB)を導入し,メディアバイアスを共通の枠組みの下でグループ化する。
115のデータセットをレビューした後、9つのタスクを選択し、メディアバイアス検出技術を評価するために、22の関連するデータセットを慎重に提案する。
我々の結果は、ヘイトスピーチ、人種的偏見、性別的偏見は検出しやすいが、モデルが認知や政治的偏見といった特定のバイアスタイプを扱うのに苦労していることを示唆している。
論文 参考訳(メタデータ) (2023-04-25T20:49:55Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
Annotations By Experts [24.51774048437496]
本稿ではメディアバイアス研究のための頑健で多様なデータセットであるBABEについて述べる。
トピックとアウトレットの間でバランスが取れた3,700の文で構成されており、単語と文のレベルにメディアバイアスラベルが含まれている。
また,本データに基づいて,ニュース記事中のバイアス文を自動的に検出する手法も導入した。
論文 参考訳(メタデータ) (2022-09-29T05:32:55Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
ディープラーニングモデルは、稀なシーンやオブジェクトを持つビデオに適用すると、パフォーマンスが悪くなります。
この問題にはアルゴリズムとデータセットの2つの異なる角度から対処する。
偏りのある表現は、他のデータセットやタスクに転送するとより一般化できることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:30:35Z) - A Domain-adaptive Pre-training Approach for Language Bias Detection in
News [3.7238620986236373]
本稿ではメディアバイアス領域に適応した新しい最先端トランスフォーマーモデルであるDA-RoBERTaを提案する。
また、バイアス領域に適応した2つのトランスフォーマーモデルであるDA-BERTとDA-BARTをトレーニングします。
提案したドメイン適応モデルは同じデータ上で事前バイアス検出手法より優れている。
論文 参考訳(メタデータ) (2022-05-22T08:18:19Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - An Interdisciplinary Approach for the Automated Detection and
Visualization of Media Bias in News Articles [0.0]
メディアバイアスを識別するためのデータセットや手法を考案することを目指しています。
私のビジョンは、ニュース読者が偏見によるメディアカバレッジの違いを認識できるようにするシステムを開発することです。
論文 参考訳(メタデータ) (2021-12-26T10:46:32Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
データセットバイアスに対するロバスト性を改善する既存のアプローチは、主にトレーニング目標の変更に焦点を当てている。
本稿では,学習データ中の入力文に対応する述語句構造を付加することを提案する。
特定のバイアスを対象とせずに、文の増大は、複数のバイアスに対してトランスフォーマーモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2020-10-23T16:22:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。