論文の概要: Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions
- arxiv url: http://arxiv.org/abs/2410.17655v1
- Date: Wed, 23 Oct 2024 08:18:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:57:36.491944
- Title: Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions
- Title(参考訳): メディアランドスケープのマッピング:Webインタラクションによる実況報告と政治バイアスの予測
- Authors: Dairazalia Sánchez-Cortés, Sergio Burdisso, Esaú Villatoro-Tello, Petr Motlicek,
- Abstract要約: 本稿では,最近発表されたニュースメディアの信頼性評価手法の拡張を提案する。
大規模ニュースメディアハイパーリンクグラフ上での4つの強化学習戦略の分類性能を評価する。
本実験は,2つの難解なバイアス記述子,事実報告と政治的偏見を対象とし,情報源メディアレベルでの大幅な性能向上を示した。
- 参考スコア(独自算出の注目度): 0.7249731529275342
- License:
- Abstract: Bias assessment of news sources is paramount for professionals, organizations, and researchers who rely on truthful evidence for information gathering and reporting. While certain bias indicators are discernible from content analysis, descriptors like political bias and fake news pose greater challenges. In this paper, we propose an extension to a recently presented news media reliability estimation method that focuses on modeling outlets and their longitudinal web interactions. Concretely, we assess the classification performance of four reinforcement learning strategies on a large news media hyperlink graph. Our experiments, targeting two challenging bias descriptors, factual reporting and political bias, showed a significant performance improvement at the source media level. Additionally, we validate our methods on the CLEF 2023 CheckThat! Lab challenge, outperforming the reported results in both, F1-score and the official MAE metric. Furthermore, we contribute by releasing the largest annotated dataset of news source media, categorized with factual reporting and political bias labels. Our findings suggest that profiling news media sources based on their hyperlink interactions over time is feasible, offering a bird's-eye view of evolving media landscapes.
- Abstract(参考訳): ニュースソースのバイアス評価は、情報収集と報告に真実の証拠に依存する専門家、組織、研究者にとって最重要である。
特定のバイアス指標はコンテンツ分析と区別できるが、政治的バイアスやフェイクニュースのような記述子はより大きな課題をもたらす。
本稿では,最近発表されたメディアの信頼性評価手法の拡張について提案する。
具体的には,大規模メディアハイパーリンクグラフを用いた4つの強化学習戦略の分類性能を評価する。
本実験は,2つの難解なバイアス記述子,事実報告と政治的偏見を対象とし,情報源メディアレベルでの大幅な性能向上を示した。
さらに、CLEF 2023 CheckThat!
F1スコアと公式のMAE測定値の両方で報告された結果を上回っている。
さらに、我々は、事実報告や政治的偏見ラベルに分類された、最大のアノテートされたニュースソースメディアデータセットを公表することで貢献する。
以上の結果から,時間とともにハイパーリンクの相互作用に基づいてニュースメディアソースをプロファイリングすることは可能であり,進化するメディアランドスケープを鳥眼で見ることが可能であることが示唆された。
関連論文リスト
- Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
われわれはまず、超党派ニュースタイトル検出のための新しいデータセットを開発するために、人間の誘導する機械学習フレームワークを採用する。
全体的に右派メディアは比例的に超党派的なタイトルを使う傾向にある。
我々は、外国問題、政治システム、ニュースタイトルにおける過党主義を示唆する社会問題を含む3つの主要なトピックを識別する。
論文 参考訳(メタデータ) (2023-01-16T05:56:58Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
本稿では,自然言語理解の最先端手法を組み合わせたバイアス識別システムを提案する。
第2に,非専門家のニュース消費者にニュース記事のバイアスを伝えるために,バイアスに敏感な可視化を考案する。
第3に、私たちの主な貢献は、日々のニュース消費を近似した設定においてバイアス認識を測定する大規模なユーザスタディです。
論文 参考訳(メタデータ) (2021-10-18T10:23:19Z) - MBIC -- A Media Bias Annotation Dataset Including Annotator
Characteristics [0.0]
メディア偏見、あるいはスライスされたニュース報道は、出来事に対する大衆の認識に重大な影響を与える可能性がある。
本稿では,自己開発アノテーションプラットフォームを用いて,そのようなデータをクラウドソーシングするための行列ベースの方法論を提案する。
メディアバイアスの事例を表す1,700のステートメントの最初のサンプルであるMBICも提示する。
論文 参考訳(メタデータ) (2021-05-20T15:05:17Z) - Newsalyze: Enabling News Consumers to Understand Media Bias [7.652448987187803]
フェイクニュース」の時代には、ニュース記事のスラントと信頼性を知ることが極めて重要である。
我々はNewsalyzeを紹介します。Newsalyzeは、言葉の選択とラベル付け(WCL)という、微妙で強力なメディアバイアスに焦点をあてたバイアス対応ニュースリーダーです。
WCLバイアスは、ニュースで報告された「フリーダム・ファイター」対「テロリスト」の評価を変えることができる。
論文 参考訳(メタデータ) (2021-05-20T11:20:37Z) - Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias [7.092487352312782]
手動で3つのアノテートデータセットを作成し、さまざまな視覚化戦略をテストする。
その結果, 対照群と比較して, 治療群の偏見に気付く効果は認められなかった。
多段階モデルを用いて、ジャーナリストの偏見は、記事の政治的極性や公平性に大きく関係していることがわかった。
論文 参考訳(メタデータ) (2021-05-20T10:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。