論文の概要: End-to-End Evaluation of a Spoken Dialogue System for Learning Basic
Mathematics
- arxiv url: http://arxiv.org/abs/2211.03511v1
- Date: Mon, 7 Nov 2022 12:58:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 17:04:33.445780
- Title: End-to-End Evaluation of a Spoken Dialogue System for Learning Basic
Mathematics
- Title(参考訳): 基礎数学学習のための音声対話システムのエンドツーエンド評価
- Authors: Eda Okur, Saurav Sahay, Roddy Fuentes Alba, Lama Nachman
- Abstract要約: 本研究は,幼児期における基本数学概念のプレイベース学習を支援するタスク指向音声対話システム(SDS)を提案する。
このシステムは、学生がマルチモーダルな相互作用を持つ初期の数学概念を実践している間に、実世界の学校展開を通じて評価されてきた。
- 参考スコア(独自算出の注目度): 8.819665252533104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advances in language-based Artificial Intelligence (AI) technologies
applied to build educational applications can present AI for social-good
opportunities with a broader positive impact. Across many disciplines,
enhancing the quality of mathematics education is crucial in building critical
thinking and problem-solving skills at younger ages. Conversational AI systems
have started maturing to a point where they could play a significant role in
helping students learn fundamental math concepts. This work presents a
task-oriented Spoken Dialogue System (SDS) built to support play-based learning
of basic math concepts for early childhood education. The system has been
evaluated via real-world deployments at school while the students are
practicing early math concepts with multimodal interactions. We discuss our
efforts to improve the SDS pipeline built for math learning, for which we
explore utilizing MathBERT representations for potential enhancement to the
Natural Language Understanding (NLU) module. We perform an end-to-end
evaluation using real-world deployment outputs from the Automatic Speech
Recognition (ASR), Intent Recognition, and Dialogue Manager (DM) components to
understand how error propagation affects the overall performance in real-world
scenarios.
- Abstract(参考訳): 教育アプリケーション構築に応用された言語ベースの人工知能(AI)技術の進歩は、より広いポジティブな影響で、社会的な良い機会にAIを提示することができる。
多くの分野において、数学教育の質の向上は、批判的思考と問題解決のスキルを構築する上で重要である。
会話型AIシステムは、学生が基本的な数学の概念を学ぶのを助けるために重要な役割を果たすように成熟し始めた。
本研究は,幼児期における基本数学概念のプレイベース学習を支援するタスク指向音声対話システム(SDS)を提案する。
このシステムは、学生がマルチモーダルインタラクションで初期の数学概念を実践している間に、実世界の学校での展開を通じて評価されている。
本研究では,自然言語理解(NLU)モジュールの潜在的な拡張のために MathBERT 表現を活用することを目的とした数学学習用 SDS パイプラインの改良について論じる。
自動音声認識(asr)、意図認識(intent recognition)、対話マネージャ(dm)コンポーネントからの実世界の配置出力を用いてエンドツーエンド評価を行い、実世界のシナリオにおけるエラー伝搬が全体的なパフォーマンスに与える影響を理解する。
関連論文リスト
- Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Beyond Traditional Teaching: The Potential of Large Language Models and
Chatbots in Graduate Engineering Education [0.0]
本稿では,大規模言語モデル(LLM)とチャットボットを大学院工学教育に統合する可能性について検討する。
コース資料から質問バンクを作成し、正確で洞察に富んだ回答を提供するボットの能力を評価する。
数学的な問題解決やコード解釈のためにWolfram Alphaのような強力なプラグインが、ボットの機能を大幅に拡張できることを示す。
論文 参考訳(メタデータ) (2023-09-09T13:37:22Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
本稿では,知的エージェントの4つの特徴について述べる。
実世界の物体との活発な関わりは、概念的表現を形成するためのより堅牢な信号をもたらすと我々は主張する。
我々は、人工知能分野における将来的な研究の方向性を概説して結論付ける。
論文 参考訳(メタデータ) (2023-07-07T13:58:16Z) - Inspecting Spoken Language Understanding from Kids for Basic Math
Learning at Home [8.819665252533104]
本研究では,Kid Space用に開発されたタスク指向対話システムにおいて,音声言語理解(SLU)パイプラインについて検討する。
自動音声認識 (ASR) と自然言語理解 (NLU) のコンポーネントをホーム配置データから評価した。
論文 参考訳(メタデータ) (2023-06-01T09:31:57Z) - New Era of Artificial Intelligence in Education: Towards a Sustainable
Multifaceted Revolution [2.94944680995069]
標準化された学術試験におけるChatGPTのハイパフォーマンスは、人工知能(AI)のトピックを、教育の将来に関する主流の議論に押し付けている。
本研究の目的は、応用、利点、課題の3つの主要な軸にまたがる既存の文献のレビューと分析を通じて、AIが教育に与える影響について調査することである。
論文 参考訳(メタデータ) (2023-05-12T08:22:54Z) - Enhancing STEM Learning with ChatGPT and Bing Chat as Objects to Think
With: A Case Study [0.0]
本研究では、高度な対話型AIであるChatGPTとBing Chatの「考える対象」としての可能性について検討する。
この研究は、ChatGPTとBing Chatが、STEM教育に革命をもたらす有望な道を提供する、と結論付けている。
論文 参考訳(メタデータ) (2023-05-01T12:20:18Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
本稿では,既存のモデル(バックボーン)を明示的な知識学習によって原則的に拡張する枠組みを提案する。
LeApでは,新しい問題知識表現パラダイムで知識学習を行う。
LeApはすべてのバックボーンのパフォーマンスを改善し、正確な知識を習得し、より解釈可能な推論プロセスを実現する。
論文 参考訳(メタデータ) (2023-02-11T15:15:41Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Data Augmentation with Paraphrase Generation and Entity Extraction for
Multimodal Dialogue System [9.912419882236918]
我々は,小学生が基本数学の概念を学ぶための多モーダル対話システムに向けて研究している。
本研究では,音声対話システムパイプラインの自然言語理解モジュールのパラフレーズ生成によるデータ拡張の可能性を探る。
我々は,小型シードデータを用いたモデル・イン・ザ・ループ(MITL)戦略のパラフレーズ化が,インテント認識タスクの性能改善をもたらす有望なアプローチであることを示した。
論文 参考訳(メタデータ) (2022-05-09T02:21:20Z) - Rethinking Supervised Learning and Reinforcement Learning in
Task-Oriented Dialogue Systems [58.724629408229205]
本稿では、従来の教師あり学習とシミュレータなしの逆学習法を用いて、最先端のRL法に匹敵する性能を実現する方法を示す。
我々の主な目的は、教師あり学習で強化学習に勝ることではなく、タスク指向対話システムの最適化における強化学習と教師あり学習の役割を再考する価値を示すことである。
論文 参考訳(メタデータ) (2020-09-21T12:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。