論文の概要: Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions
- arxiv url: http://arxiv.org/abs/2211.03524v1
- Date: Mon, 7 Nov 2022 13:05:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 17:04:12.558318
- Title: Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions
- Title(参考訳): マルチモーダル変圧器における適応的コントラスト学習
- Authors: Thong Nguyen, Xiaobao Wu, Anh-Tuan Luu, Cong-Duy Nguyen, Zhen Hai,
Lidong Bing
- Abstract要約: 本稿では,MRHP(Multimodal Review Helpfulness Prediction)問題に対するマルチモーダルコントラスト学習を提案する。
さらに,コントラスト学習における適応重み付け方式を提案する。
最後に,マルチモーダルデータの不整合性に対処するマルチモーダルインタラクションモジュールを提案する。
- 参考スコア(独自算出の注目度): 40.70793282367128
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modern Review Helpfulness Prediction systems are dependent upon multiple
modalities, typically texts and images. Unfortunately, those contemporary
approaches pay scarce attention to polish representations of cross-modal
relations and tend to suffer from inferior optimization. This might cause harm
to model's predictions in numerous cases. To overcome the aforementioned
issues, we propose Multimodal Contrastive Learning for Multimodal Review
Helpfulness Prediction (MRHP) problem, concentrating on mutual information
between input modalities to explicitly elaborate cross-modal relations. In
addition, we introduce Adaptive Weighting scheme for our contrastive learning
approach in order to increase flexibility in optimization. Lastly, we propose
Multimodal Interaction module to address the unalignment nature of multimodal
data, thereby assisting the model in producing more reasonable multimodal
representations. Experimental results show that our method outperforms prior
baselines and achieves state-of-the-art results on two publicly available
benchmark datasets for MRHP problem.
- Abstract(参考訳): Modern Review Helpfulness Prediction システムは、テキストや画像など、複数のモードに依存している。
残念なことに、これらの現代的アプローチはポーランドのクロスモーダル関係の表現にあまり注意を払わず、劣った最適化に苦しむ傾向がある。
これは多くのケースでモデルの予測に害をもたらす可能性がある。
上記の課題を克服するために, 入力モダリティ間の相互情報から, 明瞭な相互関係へと集中したMRHP(Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction)問題を提案する。
さらに,最適化の柔軟性を高めるために,コントラスト学習手法に適応的重み付けスキームを導入する。
最後に,マルチモーダルデータの不一致性に対処し,より合理的なマルチモーダル表現を生成するモデルを支援するマルチモーダルインタラクションモジュールを提案する。
実験の結果,MRHP問題に対する2つのベンチマークデータセットにおいて,提案手法が先行ベースラインより優れ,最先端の結果が得られた。
関連論文リスト
- On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference [20.761803725098005]
マルチモーダル変分オートエンコーダ(VAE)は、異なるデータモダリティからの情報を統合することで、共有潜在表現をキャプチャすることを目的としている。
重要な課題は、あらゆる可能なモダリティの組み合わせに対して、非現実的な数の推論ネットワークを訓練することなく、任意のモダリティのサブセットから正確に表現を推論することである。
本稿では,マルチモーダルVAEフレームワーク内での反復的改善機構であるマルチモーダル反復補正推論を導入する。
論文 参考訳(メタデータ) (2024-10-15T08:49:38Z) - Towards Bridging the Cross-modal Semantic Gap for Multi-modal Recommendation [12.306686291299146]
マルチモーダルレコメンデーションはレコメンデーションシステムの性能を大幅に向上させる。
既存のマルチモーダルレコメンデーションモデルは、マルチメディア情報伝搬プロセスを利用してアイテム表現を豊かにする。
本稿では,モダリティ間のセマンティックギャップをブリッジし,詳細な多視点セマンティック情報を抽出する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T15:56:03Z) - Multimodal Classification via Modal-Aware Interactive Enhancement [6.621745547882088]
モーダル・アウェア・インタラクティブ・エンハンスメント(MIE)と呼ばれる新しいマルチモーダル学習手法を提案する。
具体的には、まず、シャープネス認識最小化(SAM)に基づく最適化戦略を用いて、前フェーズにおける学習目標の円滑化を図る。
そこで, SAMの幾何学的性質の助けを借りて, 逆相における異なるモード間の影響を加味するための勾配修正戦略を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:32:07Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
本稿では,マルチモーダル潜在空間を学習するために,Set Multimodal VAE(SMVAE)と呼ばれる新しい変分法を提案する。
共同モダリティ後部分布を直接モデル化することにより、提案したSMVAEは、複数のモダリティ間で情報を交換し、分解による欠点を補うことを学習する。
論文 参考訳(メタデータ) (2022-12-19T23:50:19Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
相関情報ボトルネック (CIB) は圧縮と表現の冗長性のトレードオフを求める。
マルチモーダル入力と表現の相互情報に対して,理論上界を厳密に導出する。
論文 参考訳(メタデータ) (2022-09-14T22:04:10Z) - Abstractive Sentence Summarization with Guidance of Selective Multimodal
Reference [3.505062507621494]
モーダル間の相互関係を考慮したマルチモーダル階層選択変換器(mhsf)モデルを提案する。
提案したmhsfモデルの汎用性を,事前学習+微調整および新鮮トレーニング戦略を用いて評価した。
論文 参考訳(メタデータ) (2021-08-11T09:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。