MAISON -- Multimodal AI-based Sensor platform for Older Individuals
- URL: http://arxiv.org/abs/2211.03615v1
- Date: Mon, 7 Nov 2022 15:09:04 GMT
- Title: MAISON -- Multimodal AI-based Sensor platform for Older Individuals
- Authors: Ali Abedi, Faranak Dayyani, Charlene Chu, Shehroz S. Khan
- Abstract summary: We propose MAISON, a scalable cloud-based platform of commercially available smart devices.
The MAISON platform is able to collect and store sensor data in a cloud without functional glitches or performance degradation.
This paper will discuss the challenges faced during the development of the platform and data collection in the homes of older adults.
- Score: 3.544570529705401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a global aging population requiring the need for the right tools
that can enable older adults' greater independence and the ability to age at
home, as well as assist healthcare workers. It is feasible to achieve this
objective by building predictive models that assist healthcare workers in
monitoring and analyzing older adults' behavioral, functional, and
psychological data. To develop such models, a large amount of multimodal sensor
data is typically required. In this paper, we propose MAISON, a scalable
cloud-based platform of commercially available smart devices capable of
collecting desired multimodal sensor data from older adults and patients living
in their own homes. The MAISON platform is novel due to its ability to collect
a greater variety of data modalities than the existing platforms, as well as
its new features that result in seamless data collection and ease of use for
older adults who may not be digitally literate. We demonstrated the feasibility
of the MAISON platform with two older adults discharged home from a large
rehabilitation center. The results indicate that the MAISON platform was able
to collect and store sensor data in a cloud without functional glitches or
performance degradation. This paper will also discuss the challenges faced
during the development of the platform and data collection in the homes of
older adults. MAISON is a novel platform designed to collect multimodal data
and facilitate the development of predictive models for detecting key health
indicators, including social isolation, depression, and functional decline, and
is feasible to use with older adults in the community.
Related papers
- LSM-2: Learning from Incomplete Wearable Sensor Data [65.58595667477505]
This paper introduces the second generation of Large Sensor Model (LSM-2) with Adaptive and Inherited Masking (AIM)<n>AIM learns robust representations directly from incomplete data without requiring explicit imputation.<n>Our LSM-2 with AIM achieves the best performance across a diverse range of tasks, including classification, regression and generative modeling.
arXiv Detail & Related papers (2025-06-05T17:57:11Z) - ToolACE-DEV: Self-Improving Tool Learning via Decomposition and EVolution [77.86222359025011]
We propose ToolACE-DEV, a self-improving framework for tool learning.<n>First, we decompose the tool-learning objective into sub-tasks that enhance basic tool-making and tool-using abilities.<n>We then introduce a self-evolving paradigm that allows lightweight models to self-improve, reducing reliance on advanced LLMs.
arXiv Detail & Related papers (2025-05-12T12:48:30Z) - An Intelligent and Privacy-Preserving Digital Twin Model for Aging-in-Place [10.243093153567463]
We propose an unobtrusive sensor system designed for installation in older adults' homes.
Using data from the sensors, our system constructs a digital twin, a virtual representation of events and activities that occurred in the home.
This digital twin enables continuous health monitoring by providing actionable insights into residents' well-being.
arXiv Detail & Related papers (2025-04-04T05:37:08Z) - Multimodal Sensor Dataset for Monitoring Older Adults Post Lower-Limb Fractures in Community Settings [2.166000001057538]
Lower-Limb Fractures (LLF) are a major health concern for older adults.
During recovery, older adults frequently face social isolation and functional decline.
This paper presents a new publicly available multi-modal sensor dataset, MAISON-LLF.
arXiv Detail & Related papers (2025-01-23T18:01:01Z) - OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.2538500202457]
We propose a scalable social media simulator based on real-world social media platforms.
OASIS supports large-scale user simulations capable of modeling up to one million users.
We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms.
arXiv Detail & Related papers (2024-11-18T13:57:35Z) - DAMMI:Daily Activities in a Psychologically Annotated Multi-Modal IoT dataset [10.771838327042609]
The DAMMI dataset is designed to support researchers in the field.
It includes daily activity data of an elderly individual collected via home-installed sensors, smartphone data, and a wristband over 146 days.
The data collection spans significant events such as the COVID-19 pandemic, New Year's holidays, and the religious month of Ramadan.
arXiv Detail & Related papers (2024-10-05T13:26:54Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Disease Insight through Digital Biomarkers Developed by Remotely
Collected Wearables and Smartphone Data [3.9411499615751113]
RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka.
It provides support for study design and set-up, active (eg PROMs) and passive (eg. phone sensors, wearable devices and IoT) remote data collection capabilities.
The platform has successfully collected longitudinal data for various cohorts in a number of disease areas including Multiple Sclerosis, Depression, Epilepsy, ADHD, Alzheimer, Autism and Lung diseases.
arXiv Detail & Related papers (2023-08-03T22:44:48Z) - On Inferring User Socioeconomic Status with Mobility Records [61.0966646857356]
We propose a socioeconomic-aware deep model called DeepSEI.
The DeepSEI model incorporates two networks called deep network and recurrent network.
We conduct extensive experiments on real mobility records data, POI data and house prices data.
arXiv Detail & Related papers (2022-11-15T15:07:45Z) - Health Guardian Platform: A technology stack to accelerate discovery in
Digital Health research [1.4334172557562619]
The Health Guardian is a platform developed by the IBM Digital Health team to accelerate discoveries of new digital biomarkers and development of digital health technologies.
The platform can be connected to mobile applications, wearables, or Internet of things (IoT) devices to collect health-related data into a secure database.
When the analytics are created, the researchers can containerize and deploy their code on the cloud using pre-defined templates, and validate the models using the data collected from one or more sensing devices.
arXiv Detail & Related papers (2022-11-10T16:28:07Z) - Framework for A Personalized Intelligent Assistant to Elderly People for
Activities of Daily Living [0.0]
This work proposes a framework for development of a Personalized Intelligent Assistant to help elderly people perform Activities of Daily Living.
This framework can analyze different tasks performed by the user and recommend activities by considering their daily routine, current affective state and the underlining user experience.
The results presented show that the model achieves a performance accuracy of 73.12% when modelling a specific user.
arXiv Detail & Related papers (2021-06-29T17:36:07Z) - A highly scalable repository of waveform and vital signs data from
bedside monitoring devices [0.0]
Machine learning is driving the appetite of the research community for various types of signal data such as patient vitals.
Health care systems are ill suited for massive processing of large volumes of data.
We have developed a solution that siphons off patient vital data on a nightly basis from on-premises bio-medical systems to a cloud storage location as a permanent archive.
arXiv Detail & Related papers (2021-06-07T20:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.