OASIS: Open Agent Social Interaction Simulations with One Million Agents
- URL: http://arxiv.org/abs/2411.11581v3
- Date: Mon, 25 Nov 2024 12:16:00 GMT
- Title: OASIS: Open Agent Social Interaction Simulations with One Million Agents
- Authors: Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong Chen, Martz Ma, Bowen Dong, Prateek Gupta, Shuyue Hu, Zhenfei Yin, Guohao Li, Xu Jia, Lijun Wang, Bernard Ghanem, Huchuan Lu, Wanli Ouyang, Yu Qiao, Philip Torr, Jing Shao,
- Abstract summary: We propose a scalable social media simulator based on real-world social media platforms.
OASIS supports large-scale user simulations capable of modeling up to one million users.
We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms.
- Score: 147.2538500202457
- License:
- Abstract: There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i.e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems. As a result, several LLM-based ABMs have been proposed in the past year. While they hold promise, each simulator is specifically designed to study a particular scenario, making it time-consuming and resource-intensive to explore other phenomena using the same ABM. Additionally, these models simulate only a limited number of agents, whereas real-world social media platforms involve millions of users. To this end, we propose OASIS, a generalizable and scalable social media simulator. OASIS is designed based on real-world social media platforms, incorporating dynamically updated environments (i.e., dynamic social networks and post information), diverse action spaces (i.e., following, commenting), and recommendation systems (i.e., interest-based and hot-score-based). Additionally, OASIS supports large-scale user simulations, capable of modeling up to one million users. With these features, OASIS can be easily extended to different social media platforms to study large-scale group phenomena and behaviors. We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms. Moreover, we provide observations of social phenomena at different agent group scales. We observe that the larger agent group scale leads to more enhanced group dynamics and more diverse and helpful agents' opinions. These findings demonstrate OASIS's potential as a powerful tool for studying complex systems in digital environments.
Related papers
- Multi-Agents are Social Groups: Investigating Social Influence of Multiple Agents in Human-Agent Interactions [7.421573539569854]
We investigate whether a group of AI agents can create social pressure on users to agree with them.
We found that conversing with multiple agents increased the social pressure felt by participants.
Our study shows the potential advantages of multi-agent systems over single-agent platforms in causing opinion change.
arXiv Detail & Related papers (2024-11-07T10:00:46Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - SocialGFs: Learning Social Gradient Fields for Multi-Agent Reinforcement Learning [58.84311336011451]
We propose a novel gradient-based state representation for multi-agent reinforcement learning.
We employ denoising score matching to learn the social gradient fields (SocialGFs) from offline samples.
In practice, we integrate SocialGFs into the widely used multi-agent reinforcement learning algorithms, e.g., MAPPO.
arXiv Detail & Related papers (2024-05-03T04:12:19Z) - Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation [43.46328146533669]
Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change.
We introduce a hybrid framework HiSim for social media user simulation, wherein users are categorized into two types.
We construct a Twitter-like environment to replicate their response dynamics following trigger events.
arXiv Detail & Related papers (2024-02-26T06:28:54Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.