A Comprehensive Survey of Masked Faces: Recognition, Detection, and Unmasking
- URL: http://arxiv.org/abs/2405.05900v1
- Date: Thu, 9 May 2024 16:52:43 GMT
- Title: A Comprehensive Survey of Masked Faces: Recognition, Detection, and Unmasking
- Authors: Mohamed Mahmoud, Mahmoud SalahEldin Kasem, Hyun-Soo Kang,
- Abstract summary: Masked face recognition (MFR) has emerged as a critical domain in biometric identification, especially by the global COVID-19 pandemic.
This survey paper presents a comprehensive analysis of the challenges and advancements in recognising and detecting individuals with masked faces.
- Score: 0.5898893619901381
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Masked face recognition (MFR) has emerged as a critical domain in biometric identification, especially by the global COVID-19 pandemic, which introduced widespread face masks. This survey paper presents a comprehensive analysis of the challenges and advancements in recognising and detecting individuals with masked faces, which has seen innovative shifts due to the necessity of adapting to new societal norms. Advanced through deep learning techniques, MFR, along with Face Mask Recognition (FMR) and Face Unmasking (FU), represent significant areas of focus. These methods address unique challenges posed by obscured facial features, from fully to partially covered faces. Our comprehensive review delves into the various deep learning-based methodologies developed for MFR, FMR, and FU, highlighting their distinctive challenges and the solutions proposed to overcome them. Additionally, we explore benchmark datasets and evaluation metrics specifically tailored for assessing performance in MFR research. The survey also discusses the substantial obstacles still facing researchers in this field and proposes future directions for the ongoing development of more robust and effective masked face recognition systems. This paper serves as an invaluable resource for researchers and practitioners, offering insights into the evolving landscape of face recognition technologies in the face of global health crises and beyond.
Related papers
- Localization using Multi-Focal Spatial Attention for Masked Face
Recognition [22.833899749506394]
It is necessary to develop masked Face Recognition for contactless biometric recognition systems.
We propose Complementary Attention Learning and Multi-Focal Spatial Attention that precisely removes masked region.
We evaluate the MFR performance on the ICCV 2021-MFR/Insightface track, and demonstrate the improved performance on the both MFR and FR datasets.
arXiv Detail & Related papers (2023-05-03T05:39:12Z) - A Survey on Computer Vision based Human Analysis in the COVID-19 Era [58.79053747159797]
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals.
Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications.
These developments triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication
arXiv Detail & Related papers (2022-11-07T17:20:39Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
Coronavirus disease 2019 (COVID-19) continues to pose a great challenge to the world since its outbreak.
To fight against the disease, a series of artificial intelligence (AI) techniques are developed and applied to real-world scenarios.
In this paper, we primarily focus on the AI techniques of masked facial detection and related datasets.
arXiv Detail & Related papers (2022-01-13T03:28:20Z) - Adversarial Mask: Real-World Adversarial Attack Against Face Recognition
Models [66.07662074148142]
We propose a physical adversarial universal perturbation (UAP) against state-of-the-art deep learning-based facial recognition models.
In our experiments, we examined the transferability of our adversarial mask to a wide range of deep learning models and datasets.
We validated our adversarial mask effectiveness in real-world experiments by printing the adversarial pattern on a fabric medical face mask.
arXiv Detail & Related papers (2021-11-21T08:13:21Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Masked Face Recognition Challenge: The WebFace260M Track Report [81.57455766506197]
Face Bio-metrics under COVID Workshop and Masked Face Recognition Challenge in ICCV 2021.
WebFace260M Track aims to push the frontiers of practical MFR.
In the first phase of WebFace260M Track, 69 teams (total 833 solutions) participate in the challenge.
There are second phase of the challenge till October 1, 2021 and on-going leaderboard.
arXiv Detail & Related papers (2021-08-16T15:51:51Z) - My Eyes Are Up Here: Promoting Focus on Uncovered Regions in Masked Face
Recognition [4.171626860914305]
We address the challenge of masked face recognition (MFR) and focus on evaluating the verification performance in FRS.
We propose a methodology that combines the traditional triplet loss and the mean squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked comparison mode.
arXiv Detail & Related papers (2021-08-02T15:51:15Z) - Towards NIR-VIS Masked Face Recognition [47.00916333095693]
Near-infrared to visible (NIR-VIS) face recognition is the most common case in heterogeneous face recognition.
We propose a novel training method to maximize the mutual information shared by the face representation of two domains.
In addition, a 3D face reconstruction based approach is employed to synthesize masked face from the existing NIR image.
arXiv Detail & Related papers (2021-04-14T10:40:09Z) - Masked Face Recognition Dataset and Application [28.2082082956263]
This work proposes three types of masked face datasets, including Masked Face Detection dataset (MFDD), Real-world Masked Face Recognition dataset (RMFRD) and Simulated Masked Face Recognition dataset (SMFRD)
The multi-granularity masked face recognition model we developed achieves 95% accuracy, exceeding the results reported by the industry.
arXiv Detail & Related papers (2020-03-20T04:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.