論文の概要: Privacy-Aware Compression for Federated Learning Through Numerical
Mechanism Design
- arxiv url: http://arxiv.org/abs/2211.03942v3
- Date: Thu, 10 Aug 2023 02:55:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 16:35:22.462034
- Title: Privacy-Aware Compression for Federated Learning Through Numerical
Mechanism Design
- Title(参考訳): 数値機構設計による連合学習のためのプライバシアウェア圧縮
- Authors: Chuan Guo, Kamalika Chaudhuri, Pierre Stock, Mike Rabbat
- Abstract要約: 本稿では,より効率的なプライバシ解析を可能にする数値設計法を提案する。
Interpolated MVUメカニズムはよりスケーラブルで、より優れたプライバシユーティリティトレードオフを持ち、さまざまなデータセット上で通信効率のよいプライベートFLに対してSOTA結果を提供する。
- 参考スコア(独自算出の注目度): 32.45650219508591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In private federated learning (FL), a server aggregates differentially
private updates from a large number of clients in order to train a machine
learning model. The main challenge in this setting is balancing privacy with
both classification accuracy of the learnt model as well as the number of bits
communicated between the clients and server. Prior work has achieved a good
trade-off by designing a privacy-aware compression mechanism, called the
minimum variance unbiased (MVU) mechanism, that numerically solves an
optimization problem to determine the parameters of the mechanism. This paper
builds upon it by introducing a new interpolation procedure in the numerical
design process that allows for a far more efficient privacy analysis. The
result is the new Interpolated MVU mechanism that is more scalable, has a
better privacy-utility trade-off, and provides SOTA results on
communication-efficient private FL on a variety of datasets.
- Abstract(参考訳): private federated learning(fl)では、サーバーは、機械学習モデルをトレーニングするために、多数のクライアントから異なるプライベートアップデートを集約する。
この設定の主な課題は、クライアントとサーバの間で通信されるビット数だけでなく、学習モデルの分類精度とプライバシーのバランスをとることである。
先行研究は、mvu(minimum variance unbiased)と呼ばれるプライバシを意識した圧縮機構を設計し、最適化問題を数値的に解いて機構のパラメータを決定することで、良好なトレードオフを達成した。
本稿では、より効率的なプライバシー分析を可能にする数値設計プロセスに新たな補間手順を導入することにより、その基盤となる。
その結果、新しいInterpolated MVUメカニズムが、よりスケーラブルで、より優れたプライバシユーティリティトレードオフを持ち、さまざまなデータセット上で通信効率のよいプライベートFLに対してSOTA結果を提供する。
関連論文リスト
- FedMoE-DA: Federated Mixture of Experts via Domain Aware Fine-grained Aggregation [22.281467168796645]
Federated Learning(FL)は、複数のクライアントがプライベートデータを共有せずにモデルをトレーニングできる、コラボレーティブな機械学習アプローチである。
我々は、新しいドメイン認識、きめ細かい集約戦略を取り入れた新しいFLモデルトレーニングフレームワークであるFedMoE-DAを提案し、ロバスト性、パーソナライズ性、通信効率を同時に向上する。
論文 参考訳(メタデータ) (2024-11-04T14:29:04Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution [1.565361244756411]
Federated Learning(FL)は、複数のユーザがグローバル機械学習(ML)モデルを共同でトレーニングできるフレームワークである。
このような分散フレームワークの重要な動機の1つは、ユーザにプライバシ保証を提供することである。
本稿では,DPを提供するのに必要なランダム性を導入するために,混合幾何分布を用いた新しい量子化法を提案する。
論文 参考訳(メタデータ) (2023-12-10T04:44:53Z) - Differentially Private Over-the-Air Federated Learning Over MIMO Fading
Channels [24.534729104570417]
フェデレートラーニング(FL)は、エッジデバイスが機械学習モデルを協調的にトレーニングすることを可能にする。
オーバー・ザ・エアのモデルアグリゲーションは通信効率を向上させるが、無線ネットワーク上のエッジサーバにモデルをアップロードすると、プライバシのリスクが生じる可能性がある。
FLモデルとマルチアンテナサーバとの通信がプライバシー漏洩を増幅することを示す。
論文 参考訳(メタデータ) (2023-06-19T14:44:34Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated Learning(FL)は、複数のクライアントがプライベートデータを公開せずにモデルをトレーニングする分散機械学習フレームワークである。
FLアルゴリズムは、共有前に各クライアントのモデル更新にノイズを導入する差分プライバシーメカニズムを頻繁に採用する。
ローカルステップの数と通信ラウンドの間に最適なバランスがあることを示し、プライバシー予算内での収束性能を最大化する。
論文 参考訳(メタデータ) (2023-04-11T10:42:11Z) - Federated Nearest Neighbor Machine Translation [66.8765098651988]
本稿では,FedNN(FedNN)機械翻訳フレームワークを提案する。
FedNNは1ラウンドの記憶に基づくインタラクションを活用して、異なるクライアント間で知識を共有する。
実験の結果,FedAvgと比較して,FedNNは計算コストと通信コストを著しく削減することがわかった。
論文 参考訳(メタデータ) (2023-02-23T18:04:07Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
複数の基地局とセル間干渉を持つ無線システムにおける連合学習モデルを考える。
本稿では,学習過程の収束挙動を,その最適性ギャップの上限を導出することによって示す。
提案するスケジューラは,ランダムなスケジューラと比較して予測平均精度を向上する。
論文 参考訳(メタデータ) (2022-08-25T03:37:11Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
フェデレーション学習は、データをデバイス上でプライベートにしながら、複数のクライアントにわたるモデルの分散トレーニングを記述する。
本稿では,サーバがクライアント固有のモデルパラメータに対して事前分布のパラメータを提供する階層的潜在変数モデルとして,サーバが設定したフェデレーション学習プロセスについて考察する。
我々は,単純なガウス先行とよく知られた期待最大化(EM)アルゴリズムのハードバージョンを用いて,そのようなモデルの学習は,フェデレーション学習環境における最も一般的なアルゴリズムであるFedAvgに対応することを示す。
論文 参考訳(メタデータ) (2021-11-19T12:58:59Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。