論文の概要: QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution
- arxiv url: http://arxiv.org/abs/2312.05761v2
- Date: Tue, 11 Jun 2024 01:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 00:39:03.621759
- Title: QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution
- Title(参考訳): QMGeo: 確率量子化による異なる私的フェデレーション学習と混合縮尺幾何分布
- Authors: Zixi Wang, M. Cenk Gursoy,
- Abstract要約: Federated Learning(FL)は、複数のユーザがグローバル機械学習(ML)モデルを共同でトレーニングできるフレームワークである。
このような分散フレームワークの重要な動機の1つは、ユーザにプライバシ保証を提供することである。
本稿では,DPを提供するのに必要なランダム性を導入するために,混合幾何分布を用いた新しい量子化法を提案する。
- 参考スコア(独自算出の注目度): 1.565361244756411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a framework which allows multiple users to jointly train a global machine learning (ML) model by transmitting only model updates under the coordination of a parameter server, while being able to keep their datasets local. One key motivation of such distributed frameworks is to provide privacy guarantees to the users. However, preserving the users' datasets locally is shown to be not sufficient for privacy. Several differential privacy (DP) mechanisms have been proposed to provide provable privacy guarantees by introducing randomness into the framework, and majority of these mechanisms rely on injecting additive noise. FL frameworks also face the challenge of communication efficiency, especially as machine learning models grow in complexity and size. Quantization is a commonly utilized method, reducing the communication cost by transmitting compressed representation of the underlying information. Although there have been several studies on DP and quantization in FL, the potential contribution of the quantization method alone in providing privacy guarantees has not been extensively analyzed yet. We in this paper present a novel stochastic quantization method, utilizing a mixed geometric distribution to introduce the randomness needed to provide DP, without any additive noise. We provide convergence analysis for our framework and empirically study its performance.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のユーザがパラメータサーバの調整の下でのみモデル更新を送信し、データセットをローカルに保つことで、グローバル機械学習(ML)モデルを共同でトレーニングすることを可能にするフレームワークである。
このような分散フレームワークの重要な動機の1つは、ユーザにプライバシ保証を提供することである。
しかしながら、ユーザのデータセットをローカルに保存することは、プライバシに十分なものではないことが示されている。
フレームワークにランダム性を導入することで、証明可能なプライバシー保証を提供するために、いくつかの差分プライバシー(DP)機構が提案されている。
FLフレームワークは、特に機械学習モデルが複雑さとサイズを増すにつれて、通信効率の課題にも直面する。
量子化は一般的に利用される手法であり、基礎となる情報の圧縮表現を伝送することで通信コストを削減する。
FLにおけるDPと量子化の研究はいくつかあるが、プライバシ保証の提供における量子化手法の潜在的貢献は、まだ広く分析されていない。
本稿では、混合幾何分布を利用して、付加雑音を伴わずにDPを提供するのに必要なランダム性を導入する、新しい確率量子化法を提案する。
我々は,フレームワークの収束解析を行い,その性能を実証研究する。
関連論文リスト
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
フェデレーテッド・ラーニング(FL)は最近、産業とアカデミックの両方で多くの注目を集めています。
FLでは、機械学習モデルは、複数のラウンドにまたがって委員会に配置されたさまざまなエンドユーザのデータを使用して訓練される。
このようなデータは、しばしばセンシティブであるため、FLの主な課題は、モデルの実用性を維持しながらプライバシを提供することである。
論文 参考訳(メタデータ) (2024-10-21T16:25:14Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Randomized Quantization is All You Need for Differential Privacy in
Federated Learning [1.9785872350085876]
量子化と差分プライバシーを組み合わせたフェデレーション学習のアプローチを検討する。
我々は textbfRandomized textbfQuantization textbfMechanism (RQM) と呼ばれる新しいアルゴリズムを開発した。
アルゴリズムの性能を実証的に研究し、これまでの研究と比較すると、プライバシーと精度のトレードオフが改善されていることを示す。
論文 参考訳(メタデータ) (2023-06-20T21:54:13Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated Learning(FL)は、複数のクライアントがプライベートデータを公開せずにモデルをトレーニングする分散機械学習フレームワークである。
FLアルゴリズムは、共有前に各クライアントのモデル更新にノイズを導入する差分プライバシーメカニズムを頻繁に採用する。
ローカルステップの数と通信ラウンドの間に最適なバランスがあることを示し、プライバシー予算内での収束性能を最大化する。
論文 参考訳(メタデータ) (2023-04-11T10:42:11Z) - Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy [27.906539122581293]
本稿では,モデルを共同で訓練する複数の参加者間でセンシティブなデータが分散されるシナリオに焦点を当てる。
ディープニューラルネットワークは、基礎となるトレーニングデータを記憶する強力な能力を持っている。
この問題の効果的な解決策は、勾配にランダムノイズを注入することで厳密なプライバシー保証を提供する差分プライバシを持つモデルを訓練することである。
論文 参考訳(メタデータ) (2022-12-08T16:13:35Z) - Joint Privacy Enhancement and Quantization in Federated Learning [23.36363480217293]
Federated Learning(FL)は、エッジデバイスで利用可能なプライベートデータを使用して機械学習モデルをトレーニングするための新興パラダイムである。
共同プライバシー強化・量子化法(JoPEQ)を提案する。
所望のプライバシレベルを保持しながら、必要なビットレートに応じてデータを同時に定量化することを示す。
論文 参考訳(メタデータ) (2022-08-23T11:42:58Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。