論文の概要: Simulation-Based Parallel Training
- arxiv url: http://arxiv.org/abs/2211.04119v1
- Date: Tue, 8 Nov 2022 09:31:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 16:30:03.790751
- Title: Simulation-Based Parallel Training
- Title(参考訳): シミュレーションに基づく並列トレーニング
- Authors: Lucas Meyer (SINCLAIR AI Lab, EDF R\&D, DATAMOVE ), Alejandro Rib\'es
(EDF R\&D, SINCLAIR AI Lab), Bruno Raffin (DATAMOVE )
- Abstract要約: このようなボトルネックを緩和するトレーニングフレームワークを設計するために、現在進行中の作業を紹介します。
トレーニングプロセスと並行してデータを生成する。
このバイアスをメモリバッファで軽減する戦略を提案する。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical simulations are ubiquitous in science and engineering. Machine
learning for science investigates how artificial neural architectures can learn
from these simulations to speed up scientific discovery and engineering
processes. Most of these architectures are trained in a supervised manner. They
require tremendous amounts of data from simulations that are slow to generate
and memory greedy. In this article, we present our ongoing work to design a
training framework that alleviates those bottlenecks. It generates data in
parallel with the training process. Such simultaneity induces a bias in the
data available during the training. We present a strategy to mitigate this bias
with a memory buffer. We test our framework on the multi-parametric Lorenz's
attractor. We show the benefit of our framework compared to offline training
and the success of our data bias mitigation strategy to capture the complex
chaotic dynamics of the system.
- Abstract(参考訳): 数値シミュレーションは科学と工学においてユビキタスである。
機械学習 for scienceは、これらのシミュレーションから人工神経アーキテクチャをどのように学習し、科学的発見とエンジニアリングプロセスをスピードアップするかを研究する。
これらのアーキテクチャのほとんどは、教師付きでトレーニングされています。
生成が遅く、メモリが欲しがるシミュレーションから、膨大な量のデータが必要です。
本稿では,これらのボトルネックを緩和するトレーニングフレームワークの設計に向けて,現在進行中の作業について述べる。
トレーニングプロセスと並行してデータを生成する。
このような同時性は、トレーニング中に利用可能なデータのバイアスを引き起こす。
我々は,このバイアスをメモリバッファで軽減する戦略を提案する。
我々はマルチパラメトリックなlorenz's attractor上でフレームワークをテストする。
オフライントレーニングと比較して,我々のフレームワークのメリットと,システムの複雑なカオスダイナミクスを捉えるためのデータバイアス緩和戦略の成功を示す。
関連論文リスト
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Partitioned Neural Network Training via Synthetic Intermediate Labels [0.0]
GPUメモリの制約は、そのような巨大なモデルをトレーニングする上で、注目すべきボトルネックになっている。
この研究は、モデルをGPU間で分割し、個々のセグメントをトレーニングするために合成中間ラベルを生成することを提唱する。
このアプローチは、モデル精度を維持しながらデータ通信を最小限に抑える、より効率的なトレーニングプロセスをもたらす。
論文 参考訳(メタデータ) (2024-03-17T13:06:29Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
シミュレーションを利用して様々な物理システムやプロセスを調べる研究者を支援する機械学習ベースのデータジェネレータフレームワークを提案する。
まず、シミュレーション結果を予測するために、限られたシミュレートされたデータセットを使用して教師付き予測モデルをトレーニングする。
その後、強化学習エージェントを訓練し、教師付きモデルを利用して正確なシミュレーションライクなデータを生成する。
論文 参考訳(メタデータ) (2023-05-16T17:31:50Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
ロボット工学では、第一原理から導かれた力学モデルに基づくシミュレーションに基づいて、トレーニングデータを生成する方法がある。
ここでは、力学の複雑さの不均衡を利用して、より標本効率のよい学習を行う。
提案手法をいくつかの課題に対して検証し,既存の近視アルゴリズムと組み合わせた場合の学習改善を実証する。
論文 参考訳(メタデータ) (2023-03-03T21:55:04Z) - Data efficient surrogate modeling for engineering design: Ensemble-free
batch mode deep active learning for regression [0.6021787236982659]
そこで本研究では,学生と教師の共用で,サロゲートモデルを学習するための,シンプルでスケーラブルな学習手法を提案する。
提案手法を用いることで,DBALやモンテカルロサンプリングのような他のベースラインと同レベルのサロゲート精度が得られる。
論文 参考訳(メタデータ) (2022-11-16T02:31:57Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。