FedGrad: Optimisation in Decentralised Machine Learning
- URL: http://arxiv.org/abs/2211.04254v1
- Date: Mon, 7 Nov 2022 15:07:56 GMT
- Title: FedGrad: Optimisation in Decentralised Machine Learning
- Authors: Mann Patel
- Abstract summary: Federated learning is a machine learning paradigm where we aim to train machine learning models in a distributed fashion.
We propose yet another adaptive federated optimization method and some other ideas in the field of federated learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning is a machine learning paradigm where we aim to train
machine learning models in a distributed fashion. Many clients/edge devices
collaborate with each other to train a single model on the central. Clients do
not share their own datasets with each other, decoupling computation and data
on the same device. In this paper, we propose yet another adaptive federated
optimization method and some other ideas in the field of federated learning. We
also perform experiments using these methods and showcase the improvement in
the overall performance of federated learning.
Related papers
- Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
Federated learning has emerged as a promising approach for training machine learning models on decentralized data sources.
We propose a novel framework that combines federated learning with meta-learning techniques to enhance both efficiency and generalization capabilities.
arXiv Detail & Related papers (2023-12-23T08:18:22Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
We propose Federated Pruning to train a reduced model under the federated setting.
We explore different pruning schemes and provide empirical evidence of the effectiveness of our methods.
arXiv Detail & Related papers (2022-09-14T00:48:37Z) - Comparative assessment of federated and centralized machine learning [0.0]
Federated Learning (FL) is a privacy preserving machine learning scheme, where training happens with data federated across devices.
In this paper, we discuss the various factors that affect the federated learning training, because of the non-IID distributed nature of the data.
We show that federated learning does have an advantage in cost when the model sizes to be trained are not reasonably large.
arXiv Detail & Related papers (2022-02-03T11:20:47Z) - Scatterbrained: A flexible and expandable pattern for decentralized
machine learning [1.2891210250935146]
Federated machine learning is a technique for training a model across multiple devices without exchanging data between them.
We suggest a flexible framework for decentralizing the federated learning pattern, and provide an open-source, reference implementation compatible with PyTorch.
arXiv Detail & Related papers (2021-12-14T19:39:35Z) - FedHe: Heterogeneous Models and Communication-Efficient Federated
Learning [0.0]
Federated learning (FL) is able to manage edge devices to cooperatively train a model while maintaining the training data local and private.
We propose a novel FL method, called FedHe, inspired by knowledge distillation, which can train heterogeneous models and support asynchronous training processes.
arXiv Detail & Related papers (2021-10-19T12:18:37Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.