論文の概要: Fairness-aware Regression Robust to Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2211.04449v1
- Date: Fri, 4 Nov 2022 18:09:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 17:24:19.641183
- Title: Fairness-aware Regression Robust to Adversarial Attacks
- Title(参考訳): 逆境攻撃に頑健なフェアネス・アウェア・レグレッション
- Authors: Yulu Jin and Lifeng Lai
- Abstract要約: 私たちは、敵の攻撃に対して堅牢な公正な機械学習アルゴリズムをどのように設計するかという質問に答える第一歩を踏み出します。
合成データと実世界のデータセットの両方について、数値的な結果は、提案された逆向きに堅牢なモデルが、他の公正な機械学習モデルよりも有毒なデータセットに優れたパフォーマンスを持つことを示している。
- 参考スコア(独自算出の注目度): 46.01773881604595
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we take a first step towards answering the question of how to
design fair machine learning algorithms that are robust to adversarial attacks.
Using a minimax framework, we aim to design an adversarially robust fair
regression model that achieves optimal performance in the presence of an
attacker who is able to add a carefully designed adversarial data point to the
dataset or perform a rank-one attack on the dataset. By solving the proposed
nonsmooth nonconvex-nonconcave minimax problem, the optimal adversary as well
as the robust fairness-aware regression model are obtained. For both synthetic
data and real-world datasets, numerical results illustrate that the proposed
adversarially robust fair models have better performance on poisoned datasets
than other fair machine learning models in both prediction accuracy and
group-based fairness measure.
- Abstract(参考訳): 本稿では,敵攻撃に対して堅牢な公平な機械学習アルゴリズムを設計する方法について,その疑問に答える第一歩を踏み出す。
ミニマックスフレームワークを用いて、慎重に設計された逆データポイントをデータセットに追加したり、データセットにランクワンアタックを実行することができる攻撃者の存在下で最適なパフォーマンスを達成するための、逆向きに堅牢なフェアレグレッションモデルを設計することを目指している。
提案した非滑らかな非凸非凹極小問題の解法により、最適対向と頑健なフェアネス認識回帰モデルを得る。
合成データと実世界のデータセットの両方において、提案手法は、予測精度とグループベースフェアネス尺度の両方において、他の公正な機械学習モデルよりも有毒なデータセットに対して優れた性能を示す。
関連論文リスト
- Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
本稿では,自己教師型学習環境におけるフェアエンコーダの学習について検討する。
すべてのデータはラベル付けされておらず、そのごく一部だけが機密属性で注釈付けされている。
論文 参考訳(メタデータ) (2024-06-09T08:11:12Z) - Efficient Data-Free Model Stealing with Label Diversity [22.8804507954023]
マシンラーニング・アズ・ア・サービス(ML)は、ユーザがAPI形式で機械学習モデルに問い合わせることを可能にし、価値あるデータに基づいてトレーニングされた高性能モデルによるメリットを享受する機会を提供する。
このインターフェースは機械学習ベースのアプリケーションの増殖を促進する一方で、モデル盗難攻撃のための攻撃面を導入している。
既存のモデル盗難攻撃は、有効性を保ちながら、攻撃想定をデータフリー設定に緩和した。
本稿では,多様性の観点からモデルを盗む問題を再考し,生成したデータサンプルをすべてのクラスに多様性を持たせることが重要なポイントであることを実証する。
論文 参考訳(メタデータ) (2024-03-29T18:52:33Z) - Membership Inference Attacks against Language Models via Neighbourhood
Comparison [45.086816556309266]
メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングデータにデータサンプルが存在するかどうかを予測することを目的としている。
近年の研究では、類似データに基づいてトレーニングされた参照モデルとモデルスコアを比較した参照ベースの攻撃は、MIAの性能を大幅に向上することを示した。
より現実的なシナリオでそれらの性能を調査し、参照モデルのトレーニングに使用されるデータ分布に関して非常に脆弱であることを示す。
論文 参考訳(メタデータ) (2023-05-29T07:06:03Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - MEGA: Model Stealing via Collaborative Generator-Substitute Networks [4.065949099860426]
近年のデータフリーモデルステイティングメソッドは,実際のクエリの例を使わずに,ターゲットモデルの知識を抽出するために有効であることが示されている。
本稿では,データフリーモデルステーリングフレームワーク(MEGA)を提案する。
以上の結果から,我々の訓練した代替モデルの精度と敵攻撃成功率は,最先端のデータフリーブラックボックス攻撃よりも最大で33%,40%高い値となる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-31T09:34:28Z) - Poisoning Attacks on Fair Machine Learning [13.874416271549523]
本稿では, モデル精度とアルゴリズムフェアネスの両方に対処するために, 有毒なサンプルを生成するフレームワークを提案する。
我々は,3つのオンラインアタック,対向サンプリング,対向ラベル付け,対向特徴修正を開発する。
本フレームワークでは,攻撃者が予測精度や公平性に着目して攻撃の焦点を柔軟に調整し,各候補点の影響を精度損失と公平性違反の両方に対して正確に定量化することができる。
論文 参考訳(メタデータ) (2021-10-17T21:56:14Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - On Adversarial Bias and the Robustness of Fair Machine Learning [11.584571002297217]
異なるサイズと分布の群に同じ重要性を与えることで、トレーニングデータにおけるバイアスの影響を防止できることが、ロバストネスと矛盾する可能性があることを示す。
少数のトレーニングデータのサンプリングやラベル付けを制御できる敵は、制約のないモデルで達成できる以上のテスト精度を著しく削減することができる。
我々は、複数のアルゴリズムとベンチマークデータセットに対する攻撃の実証的な評価を通じて、公正な機械学習の堅牢性を分析する。
論文 参考訳(メタデータ) (2020-06-15T18:17:44Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。