論文の概要: A physics-aware deep learning model for energy localization in
multiscale shock-to-detonation simulations of heterogeneous energetic
materials
- arxiv url: http://arxiv.org/abs/2211.04561v2
- Date: Wed, 22 Mar 2023 01:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 02:27:40.459685
- Title: A physics-aware deep learning model for energy localization in
multiscale shock-to-detonation simulations of heterogeneous energetic
materials
- Title(参考訳): 不均一エネルギー材料のマルチスケール衝撃-起爆シミュレーションにおけるエネルギー局在に関する物理認識深層学習モデル
- Authors: Phong C.H. Nguyen, Yen-Thi Nguyen, Pradeep K. Seshadri, Joseph B.
Choi, H.S. Udaykumar, and Stephen Baek
- Abstract要約: 不均一エネルギー材料における衝撃-起爆遷移(SDT)の予測シミュレーションは、そのエネルギー放出と感度の設計と制御に不可欠である。
本研究では,EMのSDTシミュレーションのための効率的かつ高精度なマルチスケールフレームワークを提案する。
本研究では, 深層学習を用いたSDTシミュレーションのための新しい手法を提案し, 衝撃開始EMマイクロ構造のメソスケールエネルギー局在をモデル化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive simulations of the shock-to-detonation transition (SDT) in
heterogeneous energetic materials (EM) are vital to the design and control of
their energy release and sensitivity. Due to the complexity of the
thermo-mechanics of EM during the SDT, both macro-scale response and sub-grid
mesoscale energy localization must be captured accurately. This work proposes
an efficient and accurate multiscale framework for SDT simulations of EM. We
introduce a new approach for SDT simulation by using deep learning to model the
mesoscale energy localization of shock-initiated EM microstructures. The
proposed multiscale modeling framework is divided into two stages. First, a
physics-aware recurrent convolutional neural network (PARC) is used to model
the mesoscale energy localization of shock-initiated heterogeneous EM
microstructures. PARC is trained using direct numerical simulations (DNS) of
hotspot ignition and growth within microstructures of pressed HMX material
subjected to different input shock strengths. After training, PARC is employed
to supply hotspot ignition and growth rates for macroscale SDT simulations. We
show that PARC can play the role of a surrogate model in a multiscale
simulation framework, while drastically reducing the computation cost and
providing improved representations of the sub-grid physics. The proposed
multiscale modeling approach will provide a new tool for material scientists in
designing high-performance and safer energetic materials.
- Abstract(参考訳): 不均一エネルギー材料(EM)における衝撃-起爆遷移(SDT)の予測シミュレーションは、そのエネルギー放出と感度の設計と制御に不可欠である。
SDTにおけるEMの熱力学の複雑さのため、マクロスケール応答とサブグリッドメソスケールのエネルギー局在を正確に捉える必要がある。
本研究は,emのsdtシミュレーションのための効率的かつ高精度なマルチスケールフレームワークを提案する。
本研究では, 深層学習を用いたSDTシミュレーションのための新しい手法を提案し, 衝撃開始EMマイクロ構造のメソスケールエネルギー局在をモデル化する。
提案するマルチスケールモデリングフレームワークは,2つの段階に分けられる。
第一に, 物理認識型リカレント畳み込みニューラルネットワーク(parc)を用いて, 衝撃誘起不均質em微細構造のメソスケールエネルギー局在をモデル化する。
PARCは、入力衝撃強度が異なる加圧HMX材料の組織内におけるホットスポット点火および成長の直接数値シミュレーション(DNS)を用いて訓練される。
訓練後、PARCはマクロスケールSDTシミュレーションのためのホットスポット点火および成長速度の供給に使用される。
PARCは,計算コストを大幅に削減し,サブグリッド物理の表現性の向上を図りながら,マルチスケールシミュレーションフレームワークにおける代理モデルの役割を担っている。
提案するマルチスケールモデリング手法は,高性能で安全なエネルギー材料の設計において,材料科学者に新たなツールを提供する。
関連論文リスト
- A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
薬物発見において、分子動力学シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合の正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
我々は、標準的な数値MDシミュレーションよりも2000$times$のスピードアップを達成し、安定性の指標の下では、他のMLアプローチよりも最大80%高い効率で、NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Ab initio electron-lattice downfolding: potential energy landscapes,
anharmonicity, and molecular dynamics in charge density wave materials [0.0]
計算上の課題は、特に大規模システム、長期スケール、非平衡系、強い相関関係を持つシステムにおいて発生する。
本研究は, 電子面の電子的特性と原子核運動のシミュレーションを促進するために, ダウンフォールディングアプローチが, 電子面の複雑さの低減をいかに促進するかを示す。
論文 参考訳(メタデータ) (2023-03-13T16:41:37Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - PARC: Physics-Aware Recurrent Convolutional Neural Networks to
Assimilate Meso-scale Reactive Mechanics of Energetic Materials [0.0]
衝撃開始エネルギー材料(EM)のメソスケール熱力学を学習する深層学習アルゴリズムであるPARCニューラルネットワークについて述べる。
PARCにおける人工ニューロンの可視化は、EM熱力学の重要な側面に光を当てることと、EMを概念化する追加レンズを提供することを実証する。
論文 参考訳(メタデータ) (2022-04-04T14:29:35Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Cell division in deep material networks applied to multiscale strain
localization modeling [0.0]
deep material networks(dmn)は、ビルディングブロックに組み込みメカニクスを持つ機械学習モデルである。
ネットワーク上のスケール遷移を追跡するために新しいセル分割スキームが提案され、その一貫性は適合パラメータの物理によって保証される。
細胞中の新たな亀裂表面は凝集層を豊かにすることでモデル化され、亀裂発生と進化のために障害アルゴリズムが開発されている。
論文 参考訳(メタデータ) (2021-01-18T18:24:51Z) - Learning Composable Energy Surrogates for PDE Order Reduction [28.93892833892805]
パラメトリックなモジュラー構造を用いてコンポーネントレベルのサロゲートを学習し、より安価な高忠実度シミュレーションを実現する。
ニューラルネットワークを用いて、所定の境界条件で格納されたポテンシャルエネルギーをモデル化する。
構成可能なエネルギーサロゲートは、コンポーネント境界の縮小に基づくシミュレーションを可能にする。
論文 参考訳(メタデータ) (2020-05-13T19:41:24Z) - Deep learning for synthetic microstructure generation in a
materials-by-design framework for heterogeneous energetic materials [0.0]
化学反応のマルチスケール予測モデルは、メソスケールの物理を説明する。
メソスケール物理は、メソスケールの解決されたシミュレーションによって誘導される機械学習閉包モデルに注入される。
本稿では, 合成ヘテロジニアス系エネルギー材料マイクロ構造のアンサンブルを生成するために, GAN(Generative Adversarial Network)を活用することを提案する。
論文 参考訳(メタデータ) (2020-04-05T16:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。