論文の概要: MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG
- arxiv url: http://arxiv.org/abs/2211.04628v1
- Date: Wed, 9 Nov 2022 01:07:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 17:49:36.920146
- Title: MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG
- Title(参考訳): MP-SeizNet:脳波を用いた青少年型分類のためのマルチパスCNN Bi-LSTMネットワーク
- Authors: Hezam Albaqami, Ghulam Mubashar Hassan and Amitava Datta
- Abstract要約: てんかん患者の治療と管理には, 精垂型鑑別が不可欠である。
本稿では,MP-SeizNetを用いた新しいマルチパス・アセプション型ディープラーニング・ネットワークを提案する。
MP-SeizNetは、畳み込みニューラルネットワーク(CNN)と、注意機構を備えた双方向長短期記憶ニューラルネットワーク(Bi-LSTM)で構成されている。
- 参考スコア(独自算出の注目度): 2.1915057426589746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seizure type identification is essential for the treatment and management of
epileptic patients. However, it is a difficult process known to be time
consuming and labor intensive. Automated diagnosis systems, with the
advancement of machine learning algorithms, have the potential to accelerate
the classification process, alert patients, and support physicians in making
quick and accurate decisions. In this paper, we present a novel multi-path
seizure-type classification deep learning network (MP-SeizNet), consisting of a
convolutional neural network (CNN) and a bidirectional long short-term memory
neural network (Bi-LSTM) with an attention mechanism. The objective of this
study was to classify specific types of seizures, including complex partial,
simple partial, absence, tonic, and tonic-clonic seizures, using only
electroencephalogram (EEG) data. The EEG data is fed to our proposed model in
two different representations. The CNN was fed with wavelet-based features
extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals
to let our MP-SeizNet jointly learns from different representations of seizure
data for more accurate information learning. The proposed MP-SeizNet was
evaluated using the largest available EEG epilepsy database, the Temple
University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed
model across different patient data using three-fold cross-validation and
across seizure data using five-fold cross-validation, achieving F1 scores of
87.6% and 98.1%, respectively.
- Abstract(参考訳): てんかん患者の治療と管理には, 精垂型鑑別が不可欠である。
しかし、時間消費と労働集約であることが知られている難しいプロセスである。
機械学習アルゴリズムの進歩による自動診断システムは、分類プロセスを加速し、患者に警告し、医師が迅速かつ正確な意思決定を行うのをサポートする可能性がある。
本稿では,畳み込み型ニューラルネットワーク(CNN)と,注目機構を備えた双方向長短期記憶型ニューラルネットワーク(Bi-LSTM)からなる,新しいマルチパス発作型分類ディープラーニングネットワーク(MP-SeizNet)を提案する。
本研究の目的は、脳波(EEG)データのみを用いて、複雑な部分的、単純部分的、欠如、緊張性、強直性発作を含む特定の種類の発作を分類することであった。
eegデータは2つの異なる表現で提案モデルに供給されます。
CNNは、脳波信号から抽出したウェーブレットベースの特徴を、Bi-LSTMは生の脳波信号を供給し、MP-SeizNetは、より正確な情報学習のために、異なる発作データの表現から共同で学習する。
提案するmp-seiznetは,最大の脳波データベースであるテンプル大学病院脳波発作コーパスtusz v1.5.2を用いて評価した。
5倍のクロスバリデーションを用いて3倍のクロスバリデーションと5倍のクロスバリデーションと98.1%のF1スコアをそれぞれ評価した。
関連論文リスト
- From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
側頭葉てんかんの3分の1は薬剤耐性を示す。
抗敗血症薬開発の鍵となるのはてんかん発作の検出と定量化である。
本研究では,脳波信号に適用した深層学習モデルに基づく発作検出パイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-04T12:52:37Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
本稿では,3次元畳み込みニューラルネットワーク(CNN)と長期記憶ネットワーク(LSTM)を組み合わせて運動画像(MI)信号を分類するモデルを提案する。
実験の結果、このモデルは、BCIコンペティションIVデータセット2aの分類精度92.7%、F1スコア0.91に達した。
このモデルにより、ユーザの運動像意図の分類精度が大幅に向上し、自律走行車や医療リハビリテーションといった新興分野における脳-コンピュータインタフェースの応用可能性が改善された。
論文 参考訳(メタデータ) (2023-12-20T03:38:24Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
我々は、診断とBCI(Brain-Computer-Interface)に関する2つの伝達学習課題を設計する。
第1タスクは、患者全体にわたる自動睡眠ステージアノテーションに対処する医療診断に重点を置いている。
タスク2はBrain-Computer Interface (BCI)に集中しており、被験者とデータセットの両方にわたる運動画像のデコードに対処する。
論文 参考訳(メタデータ) (2022-02-14T12:12:20Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Novel EEG based Schizophrenia Detection with IoMT Framework for Smart
Healthcare [0.0]
統合失調症(Sz)は、世界中の人々の思考、行動、感情に深刻な影響を及ぼす脳障害である。
EEGは非線形時系列信号であり、その非線形構造のために調査に利用することがかなり重要である。
本稿では,深層学習を用いた脳波を用いたSz検出の性能向上を目的とする。
論文 参考訳(メタデータ) (2021-11-19T18:21:20Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG
signals [4.748221780751802]
ディープラーニング(DL)は、しばしば人工知能ベースの医療意思決定支援の最先端とみなされます。
臨床現場では未だに実装されており、ニューラルネットワークモデルの解釈能力が不十分なため、臨床医の信頼は低い。
脳波信号に基づくてんかん発作のオンライン検出の文脈で解釈可能なDLモデルを開発することでこの問題に対処した。
論文 参考訳(メタデータ) (2020-12-22T11:10:23Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
本稿では, 難治性てんかんの診断に応用したハイブリッドバイリニア深層学習ネットワークを提案する。
診断の精度は、医療症状の重複、様々な経験のレベル、および臨床専門職間の多様性によっても複雑である。
論文 参考訳(メタデータ) (2020-01-15T03:22:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。