論文の概要: Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG
signals
- arxiv url: http://arxiv.org/abs/2012.11933v1
- Date: Tue, 22 Dec 2020 11:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:43:43.668485
- Title: Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG
signals
- Title(参考訳): 脳波信号のてんかん発作検出のためのディープラーニングモデル解釈
- Authors: Valentin Gabeff, Tomas Teijeiro, Marina Zapater, Leila Cammoun,
Sylvain Rheims, Philippe Ryvlin, David Atienza
- Abstract要約: ディープラーニング(DL)は、しばしば人工知能ベースの医療意思決定支援の最先端とみなされます。
臨床現場では未だに実装されており、ニューラルネットワークモデルの解釈能力が不十分なため、臨床医の信頼は低い。
脳波信号に基づくてんかん発作のオンライン検出の文脈で解釈可能なDLモデルを開発することでこの問題に対処した。
- 参考スコア(独自算出の注目度): 4.748221780751802
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While Deep Learning (DL) is often considered the state-of-the art for
Artificial Intelligence-based medical decision support, it remains sparsely
implemented in clinical practice and poorly trusted by clinicians due to
insufficient interpretability of neural network models. We have tackled this
issue by developing interpretable DL models in the context of online detection
of epileptic seizure, based on EEG signal. This has conditioned the preparation
of the input signals, the network architecture, and the post-processing of the
output in line with the domain knowledge. Specifically, we focused the
discussion on three main aspects: 1) how to aggregate the classification
results on signal segments provided by the DL model into a larger time scale,
at the seizure-level; 2) what are the relevant frequency patterns learned in
the first convolutional layer of different models, and their relation with the
delta, theta, alpha, beta and gamma frequency bands on which the visual
interpretation of EEG is based; and 3) the identification of the signal
waveforms with larger contribution towards the ictal class, according to the
activation differences highlighted using the DeepLIFT method. Results show that
the kernel size in the first layer determines the interpretability of the
extracted features and the sensitivity of the trained models, even though the
final performance is very similar after post-processing. Also, we found that
amplitude is the main feature leading to an ictal prediction, suggesting that a
larger patient population would be required to learn more complex frequency
patterns. Still, our methodology was successfully able to generalize patient
inter-variability for the majority of the studied population with a
classification F1-score of 0.873 and detecting 90% of the seizures.
- Abstract(参考訳): 深層学習(deep learning, dl)は、人工知能に基づく医学的意思決定支援の最先端技術と見なされることが多いが、ニューラルネットワークモデルの解釈が不十分なため、臨床医の信頼度は低いままである。
脳波信号に基づくてんかん発作のオンライン検出の文脈で解釈可能なDLモデルを開発することでこの問題に対処した。
これにより、入力信号の作成、ネットワークアーキテクチャ、およびドメイン知識に沿った出力の処理が条件付けられた。
Specifically, we focused the discussion on three main aspects: 1) how to aggregate the classification results on signal segments provided by the DL model into a larger time scale, at the seizure-level; 2) what are the relevant frequency patterns learned in the first convolutional layer of different models, and their relation with the delta, theta, alpha, beta and gamma frequency bands on which the visual interpretation of EEG is based; and 3) the identification of the signal waveforms with larger contribution towards the ictal class, according to the activation differences highlighted using the DeepLIFT method.
その結果、第1層のカーネルサイズは、後処理後の最終的な性能が非常によく似ているにもかかわらず、抽出した特徴の解釈可能性と訓練されたモデルの感度を決定することがわかった。
また,ictal予測の主要な特徴は振幅であり,より複雑な周波数パターンを学ぶためには,患者人口の増加が必要であることが示唆された。
また,f1-scoreを0.873に分類し,90%の発作を検出できた。
関連論文リスト
- A Deep Learning Network for the Classification of Intracardiac
Electrograms in Atrial Tachycardia [4.62891362095648]
心房頻拍に対するカテーテルアブレーション治療の成功を可能にする重要な技術は,アクティベーションマッピングである。
これは、分数化信号の信号活性化ピークを特定するのが困難であるため、時間を要する、エラーを起こしやすい手順である。
本研究では,EMG信号の自動分類を3つのタイプに分類するディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-06-02T09:56:27Z) - neuro2vec: Masked Fourier Spectrum Prediction for Neurophysiological
Representation Learning [17.99757247672905]
神経生理学的信号の自己教師付き事前学習のためのフーリエに基づくモデリングフレームワークを初めて提示する。
我々のモデリング手法は、下流の神経生理学的タスクを大きなマージンで改善することを示します。
論文 参考訳(メタデータ) (2022-04-20T16:48:18Z) - Ultrasound Signal Processing: From Models to Deep Learning [83.00618699971432]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理アルゴリズムに大きく依存している。
手作りの再現法は、しばしば基礎となる測定モデルの近似に基づいており、実際は有用であるが、画質の面では遅れている。
ディープラーニングベースの手法が人気を集め、データ駆動方式で最適化されている。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
ヘテロジニアスデータセットにディープラーニングモデルを適用する際の問題点について検討する。
本研究では,健常者からのデータに基づいてトレーニングしたモデルの性能が,心疾患患者に適用した場合に低下することを示す。
次に、異なるデータセットにモデルを適応させるためのTransfer Learningの使用を評価します。
論文 参考訳(メタデータ) (2021-10-26T14:26:55Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Generative Autoencoder Kernels on Deep Learning for Brain Activity
Analysis [3.04585143845864]
HessELM-AE (Hessenberg decomposition-based ELM autoencoder) は、入力データの異なる表示を生成する新しいカーネルである。
本研究の目的は、脳卒中患者の脳波(EEG)に対する臨床的有用性のための新しいDeep AEカーネルの性能を分析することである。
論文 参考訳(メタデータ) (2021-01-21T08:19:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。