MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG
- URL: http://arxiv.org/abs/2211.04628v1
- Date: Wed, 9 Nov 2022 01:07:20 GMT
- Title: MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG
- Authors: Hezam Albaqami, Ghulam Mubashar Hassan and Amitava Datta
- Abstract summary: Seizure type identification is essential for the treatment and management of epileptic patients.
We present a novel multi-path seizure-type classification deep learning network (MP-SeizNet)
MP-SeizNet consists of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism.
- Score: 2.1915057426589746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seizure type identification is essential for the treatment and management of
epileptic patients. However, it is a difficult process known to be time
consuming and labor intensive. Automated diagnosis systems, with the
advancement of machine learning algorithms, have the potential to accelerate
the classification process, alert patients, and support physicians in making
quick and accurate decisions. In this paper, we present a novel multi-path
seizure-type classification deep learning network (MP-SeizNet), consisting of a
convolutional neural network (CNN) and a bidirectional long short-term memory
neural network (Bi-LSTM) with an attention mechanism. The objective of this
study was to classify specific types of seizures, including complex partial,
simple partial, absence, tonic, and tonic-clonic seizures, using only
electroencephalogram (EEG) data. The EEG data is fed to our proposed model in
two different representations. The CNN was fed with wavelet-based features
extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals
to let our MP-SeizNet jointly learns from different representations of seizure
data for more accurate information learning. The proposed MP-SeizNet was
evaluated using the largest available EEG epilepsy database, the Temple
University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed
model across different patient data using three-fold cross-validation and
across seizure data using five-fold cross-validation, achieving F1 scores of
87.6% and 98.1%, respectively.
Related papers
- From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
One-third of people suffering from mesial temporal lobe epilepsy exhibit drug resistance.
Key part in anti-seizure medication development is the capability of detecting and quantifying epileptic seizures.
In this study, we introduced a seizure detection pipeline based on deep learning models applied to raw EEG signals.
arXiv Detail & Related papers (2024-10-04T12:52:37Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
This paper proposed a model that combined a three-dimensional convolutional neural network (CNN) with a long short-term memory (LSTM) network to classify motor imagery (MI) signals.
Experimental results showed that this model achieved a classification accuracy of 92.7% and an F1-score of 0.91 on the public dataset BCI Competition IV dataset 2a.
The model greatly improved the classification accuracy of users' motor imagery intentions, giving brain-computer interfaces better application prospects in emerging fields such as autonomous vehicles and medical rehabilitation.
arXiv Detail & Related papers (2023-12-20T03:38:24Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Novel EEG based Schizophrenia Detection with IoMT Framework for Smart
Healthcare [0.0]
Schizophrenia(Sz) is a brain disorder that severely affects the thinking, behaviour, and feelings of people all around the world.
EEG is a non-linear time-seriesi signal and utilizing it for investigation is rather crucial due to its non-linear structure.
This paper aims to improve the performance of EEG based Sz detection using a deep learning approach.
arXiv Detail & Related papers (2021-11-19T18:21:20Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG
signals [4.748221780751802]
Deep Learning (DL) is often considered the state-of-the art for Artificial Intelligence-based medical decision support.
It remains sparsely implemented in clinical practice and poorly trusted by clinicians due to insufficient interpretability of neural network models.
We have tackled this issue by developing interpretable DL models in the context of online detection of epileptic seizure, based on EEG signal.
arXiv Detail & Related papers (2020-12-22T11:10:23Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis.
The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-ob variability among clinical professions.
arXiv Detail & Related papers (2020-01-15T03:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.