Quantum Search Algorithm for Binary Constant Weight Codes
- URL: http://arxiv.org/abs/2211.04637v1
- Date: Wed, 9 Nov 2022 01:57:11 GMT
- Title: Quantum Search Algorithm for Binary Constant Weight Codes
- Authors: Kein Yukiyoshi and Naoki Ishikawa
- Abstract summary: A binary constant weight code is a type of error-correcting code with a wide range of applications.
We propose a quantum search algorithm for binary constant weight codes.
- Score: 3.3555130013686014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A binary constant weight code is a type of error-correcting code with a wide
range of applications. The problem of finding a binary constant weight code has
long been studied as a combinatorial optimization problem in coding theory. In
this paper, we propose a quantum search algorithm for binary constant weight
codes. Specifically, the search problem is newly formulated as a quadratic
unconstrained binary optimization (QUBO) and Grover adaptive search (GAS) is
used for providing the quadratic speedup. Focusing on the inherent structure of
the problem, we derive an upper bound on the minimum of the objective function
value and a lower bound on the exact number of solutions. In our algebraic
analysis, it was found that this proposed algorithm is capable of reducing the
number of required qubits, thus enhancing the feasibility. Additionally, our
simulations demonstrated that it reduces the query complexities by 63% in the
classical domain and 31% in the quantum domain. The proposed approach may be
useful for other quantum search algorithms and optimization problems.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Discretized Quantum Exhaustive Search for Variational Quantum Algorithms [0.0]
Currently available quantum devices have only a limited amount of qubits and a high level of noise, limiting the size of problems that can be solved accurately with those devices.
We propose a novel method that can improve variational quantum algorithms -- discretized quantum exhaustive search''
arXiv Detail & Related papers (2024-07-24T22:06:05Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Enhancing Quantum Algorithms for Quadratic Unconstrained Binary Optimization via Integer Programming [0.0]
In this work, we integrate the potentials of quantum and classical techniques for optimization.
We reduce the problem size according to a linear relaxation such that the reduced problem can be handled by quantum machines of limited size.
We present numerous computational results from real quantum hardware.
arXiv Detail & Related papers (2023-02-10T20:12:53Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Sparse Coding [5.130440339897477]
We develop a quantum-inspired algorithm for sparse coding.
The emergence of quantum computers and Ising machines can potentially lead to more accurate estimations.
We conduct numerical experiments with simulated data on Lightr's quantum-inspired digital platform.
arXiv Detail & Related papers (2022-09-08T13:00:30Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
arXiv Detail & Related papers (2021-01-19T19:00:40Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.