Enhancing Quantum Algorithms for Quadratic Unconstrained Binary Optimization via Integer Programming
- URL: http://arxiv.org/abs/2302.05493v3
- Date: Fri, 26 Apr 2024 07:52:13 GMT
- Title: Enhancing Quantum Algorithms for Quadratic Unconstrained Binary Optimization via Integer Programming
- Authors: Friedrich Wagner, Jonas Nüßlein, Frauke Liers,
- Abstract summary: In this work, we integrate the potentials of quantum and classical techniques for optimization.
We reduce the problem size according to a linear relaxation such that the reduced problem can be handled by quantum machines of limited size.
We present numerous computational results from real quantum hardware.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To date, research in quantum computation promises potential for outperforming classical heuristics in combinatorial optimization. However, when aiming at provable optimality, one has to rely on classical exact methods like integer programming. State-of-the-art integer programming algorithms can compute strong relaxation bounds even for hard instances, but may have to enumerate a large number of subproblems for determining an optimum solution. If the potential of quantum computing realizes, it can be expected that in particular finding high-quality solutions for hard problems can be done fast. Still, near-future quantum hardware considerably limits the size of treatable problems. In this work, we go one step into integrating the potentials of quantum and classical techniques for combinatorial optimization. We propose a hybrid heuristic for the weighted maximum-cut problem or, equivalently, for quadratic unconstrained binary optimization. The heuristic employs a linear programming relaxation, rendering it well-suited for integration into exact branch-and-cut algorithms. For large instances, we reduce the problem size according to a linear relaxation such that the reduced problem can be handled by quantum machines of limited size. Moreover, we improve the applicability of QAOA, a parameterized quantum algorithm, by deriving optimal parameters for special instances which motivates a parameter estimate for arbitrary instances. We present numerous computational results from real quantum hardware.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
We present an approximate gradient-based quantum algorithm for hardware-efficient circuits with amplitude encoding.
We show how simple linear constraints can be directly incorporated into the circuit without additional modification of the objective function with penalty terms.
arXiv Detail & Related papers (2023-05-23T16:17:57Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
arXiv Detail & Related papers (2021-01-19T19:00:40Z) - Warm-starting quantum optimization [6.832341432995627]
We discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of an optimization problem.
This allows the quantum algorithm to inherit the performance guarantees of the classical algorithm.
It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.
arXiv Detail & Related papers (2020-09-21T18:00:09Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.