Machine-Learned Exclusion Limits without Binning
- URL: http://arxiv.org/abs/2211.04806v2
- Date: Fri, 15 Dec 2023 11:40:58 GMT
- Title: Machine-Learned Exclusion Limits without Binning
- Authors: Ernesto Arganda, Andres D. Perez, Martin de los Rios, Rosa Mar\'ia
Sand\'a Seoane
- Abstract summary: We extend the Machine-Learned Likelihoods (MLL) method by including Kernel Density Estimators (KDE) to extract one-dimensional signal and background probability density functions.
We apply the method to two cases of interest at the LHC: a search for exotic Higgs bosons, and a $Z'$ boson decaying into lepton pairs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-Learned Likelihoods (MLL) combines machine-learning classification
techniques with likelihood-based inference tests to estimate the experimental
sensitivity of high-dimensional data sets. We extend the MLL method by
including Kernel Density Estimators (KDE) to avoid binning the classifier
output to extract the resulting one-dimensional signal and background
probability density functions. We first test our method on toy models generated
with multivariate Gaussian distributions, where the true probability
distribution functions are known. Later, we apply the method to two cases of
interest at the LHC: a search for exotic Higgs bosons, and a $Z'$ boson
decaying into lepton pairs. In contrast to physical-based quantities, the
typical fluctuations of the ML outputs give non-smooth probability
distributions for pure-signal and pure-background samples. The non-smoothness
is propagated into the density estimation due to the good performance and
flexibility of the KDE method. We study its impact on the final significance
computation, and we compare the results using the average of several
independent ML output realizations, which allows us to obtain smoother
distributions. We conclude that the significance estimation turns out to be not
sensible to this issue.
Related papers
- Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
Density estimation is a fundamental technique employed in various fields to model and to understand the underlying distribution of data.
In this paper we propose the mono-variate approximation of the density using quasi-interpolation.
The presented algorithm is validated on artificial and real datasets.
arXiv Detail & Related papers (2024-02-18T11:49:38Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Estimating Joint Probability Distribution With Low-Rank Tensor
Decomposition, Radon Transforms and Dictionaries [3.0892724364965005]
We describe a method for estimating the joint probability density from data samples by assuming that the underlying distribution can be decomposed as a mixture of product densities with few mixture components.
We combine two key ideas: dictionaries to represent 1-D densities, and random projections to estimate the joint distribution from 1-D marginals.
Our algorithm benefits from improved sample complexity over the previous dictionary-based approach by using 1-D marginals for reconstruction.
arXiv Detail & Related papers (2023-04-18T05:37:15Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Joint Probability Estimation Using Tensor Decomposition and Dictionaries [3.4720326275851994]
We study non-parametric estimation of joint probabilities of a given set of discrete and continuous random variables from their (empirically estimated) 2D marginals.
We create a dictionary of various families of distributions by inspecting the data, and use it to approximate each decomposed factor of the product in the mixture.
arXiv Detail & Related papers (2022-03-03T11:55:51Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
We develop a deterministic particle method for the weighted porous medium equation (WPME) and prove its convergence on bounded time intervals.
Our method has natural applications to multi-agent coverage algorithms and sampling probability measures.
arXiv Detail & Related papers (2022-02-25T19:49:05Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.