Outcome-Oriented Prescriptive Process Monitoring Based on Temporal Logic
Patterns
- URL: http://arxiv.org/abs/2211.04880v3
- Date: Mon, 21 Aug 2023 07:53:32 GMT
- Title: Outcome-Oriented Prescriptive Process Monitoring Based on Temporal Logic
Patterns
- Authors: Ivan Donadello, Chiara Di Francescomarino, Fabrizio Maria Maggi,
Francesco Ricci, Aladdin Shikhizada
- Abstract summary: We propose a new Outcome-Oriented Prescriptive Process Monitoring system.
It recommends temporal relations between activities that have to be guaranteed during the process execution.
This softens the mandatory execution of an activity at a given point in time, thus leaving more freedom to the user.
- Score: 9.876717580544364
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prescriptive Process Monitoring systems recommend, during the execution of a
business process, interventions that, if followed, prevent a negative outcome
of the process. Such interventions have to be reliable, that is, they have to
guarantee the achievement of the desired outcome or performance, and they have
to be flexible, that is, they have to avoid overturning the normal process
execution or forcing the execution of a given activity. Most of the existing
Prescriptive Process Monitoring solutions, however, while performing well in
terms of recommendation reliability, provide the users with very specific
(sequences of) activities that have to be executed without caring about the
feasibility of these recommendations. In order to face this issue, we propose a
new Outcome-Oriented Prescriptive Process Monitoring system recommending
temporal relations between activities that have to be guaranteed during the
process execution in order to achieve a desired outcome. This softens the
mandatory execution of an activity at a given point in time, thus leaving more
freedom to the user in deciding the interventions to put in place. Our approach
defines these temporal relations with Linear Temporal Logic over finite traces
patterns that are used as features to describe the historical process data
recorded in an event log by the information systems supporting the execution of
the process. Such encoded log is used to train a Machine Learning classifier to
learn a mapping between the temporal patterns and the outcome of a process
execution. The classifier is then queried at runtime to return as
recommendations the most salient temporal patterns to be satisfied to maximize
the likelihood of a certain outcome for an input ongoing process execution. The
proposed system is assessed using a pool of 22 real-life event logs that have
already been used as a benchmark in the Process Mining community.
Related papers
- Extending predictive process monitoring for collaborative processes [0.9208007322096533]
Predictive process monitoring is based on exploiting execution data from past instances to predict the execution of current cases.
It is possible to make predictions on the next activity and remaining time, among others, to anticipate possible deviations, violations, and delays in the processes to take preventive measures.
In this work, we propose an extension for collaborative processes of traditional process prediction, considering particularities of this type of process.
arXiv Detail & Related papers (2024-09-13T21:56:23Z) - Avoiding Post-Processing with Event-Based Detection in Biomedical
Signals [69.34035527763916]
We propose an event-based modeling framework that directly works with events as learning targets.
We show that event-based modeling (without post-processing) performs on par with or better than epoch-based modeling with extensive post-processing.
arXiv Detail & Related papers (2022-09-22T13:44:13Z) - Chain of Thought Imitation with Procedure Cloning [129.62135987416164]
We propose procedure cloning, which applies supervised sequence prediction to imitate the series of expert computations.
We show that imitating the intermediate computations of an expert's behavior enables procedure cloning to learn policies exhibiting significant generalization to unseen environment configurations.
arXiv Detail & Related papers (2022-05-22T13:14:09Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
The paper studies existing methods in this field via a Systematic Literature Review ( SLR)
The SLR provides insights into challenges and areas for future research that could enhance the usefulness and applicability of prescriptive process monitoring methods.
arXiv Detail & Related papers (2021-12-03T08:06:24Z) - Exploring Business Process Deviance with Sequential and Declarative
Patterns [3.039637436705478]
Deviance mining is concerned with uncovering the reasons for deviant executions by analyzing event logs stored by the systems supporting the execution of a business process.
The problem of explaining deviations in business processes is first investigated by using features based on sequential and declarative patterns.
The explanations are then extracted by direct and indirect methods for rule induction.
arXiv Detail & Related papers (2021-11-24T12:16:07Z) - Prescriptive Process Monitoring for Cost-Aware Cycle Time Reduction [0.7837881800517111]
This paper tackles the problem of determining if and when to trigger a time-reducing intervention in a way that maximizes the total net gain.
The paper proposes a prescriptive process monitoring method that uses random forest models to estimate the causal effect of triggering a time-reducing intervention.
arXiv Detail & Related papers (2021-05-15T01:19:04Z) - ProcessTransformer: Predictive Business Process Monitoring with
Transformer Network [0.06445605125467573]
We propose ProcessTransformer, an approach for learning high-level representations from event logs with an attention-based network.
Our model incorporates long-range memory and relies on a self-attention mechanism to establish dependencies between a multitude of event sequences and corresponding outputs.
arXiv Detail & Related papers (2021-04-01T18:58:46Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
We introduce the CoCoMoT (Computing Conformance Modulo Theories) framework.
First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering.
arXiv Detail & Related papers (2021-03-18T20:22:50Z) - Predictive Process Model Monitoring using Recurrent Neural Networks [2.4029798593292706]
This paper introduces Processes-As-Movies (PAM), a technique that provides a middle ground between predictive monitoring.
It does so by capturing declarative process constraints between activities in various windows of a process execution trace.
Various recurrent neural network topologies tailored to high-dimensional input are used to model the process model evolution with windows as time steps.
arXiv Detail & Related papers (2020-11-05T13:57:33Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z) - Time-varying Gaussian Process Bandit Optimization with Non-constant
Evaluation Time [93.6788993843846]
We propose a novel time-varying Bayesian optimization algorithm that can effectively handle the non-constant evaluation time.
Our bound elucidates that a pattern of the evaluation time sequence can hugely affect the difficulty of the problem.
arXiv Detail & Related papers (2020-03-10T13:28:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.