Extending predictive process monitoring for collaborative processes
- URL: http://arxiv.org/abs/2409.09212v1
- Date: Fri, 13 Sep 2024 21:56:23 GMT
- Title: Extending predictive process monitoring for collaborative processes
- Authors: Daniel Calegari, Andrea Delgado,
- Abstract summary: Predictive process monitoring is based on exploiting execution data from past instances to predict the execution of current cases.
It is possible to make predictions on the next activity and remaining time, among others, to anticipate possible deviations, violations, and delays in the processes to take preventive measures.
In this work, we propose an extension for collaborative processes of traditional process prediction, considering particularities of this type of process.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Process mining on business process execution data has focused primarily on orchestration-type processes performed in a single organization (intra-organizational). Collaborative (inter-organizational) processes, unlike those of orchestration type, expand several organizations (for example, in e-Government), adding complexity and various challenges both for their implementation and for their discovery, prediction, and analysis of their execution. Predictive process monitoring is based on exploiting execution data from past instances to predict the execution of current cases. It is possible to make predictions on the next activity and remaining time, among others, to anticipate possible deviations, violations, and delays in the processes to take preventive measures (e.g., re-allocation of resources). In this work, we propose an extension for collaborative processes of traditional process prediction, considering particularities of this type of process, which add information of interest in this context, for example, the next activity of which participant or the following message to be exchanged between two participants.
Related papers
- Process Variant Analysis Across Continuous Features: A Novel Framework [0.0]
This research addresses the challenge of effectively segmenting cases within operational processes.
We present a novel approach employing a sliding window technique combined with the earth mover's distance to detect changes in control flow behavior.
We validate our methodology through a real-life case study in collaboration with UWV, the Dutch employee insurance agency.
arXiv Detail & Related papers (2024-05-06T16:10:13Z) - Performance-Preserving Event Log Sampling for Predictive Monitoring [0.3425341633647624]
We propose an instance selection procedure that allows sampling training process instances for prediction models.
We show that our instance selection procedure allows for a significant increase of training speed for next activity and remaining time prediction methods.
arXiv Detail & Related papers (2023-01-18T16:07:56Z) - Outcome-Oriented Prescriptive Process Monitoring Based on Temporal Logic
Patterns [9.876717580544364]
We propose a new Outcome-Oriented Prescriptive Process Monitoring system.
It recommends temporal relations between activities that have to be guaranteed during the process execution.
This softens the mandatory execution of an activity at a given point in time, thus leaving more freedom to the user.
arXiv Detail & Related papers (2022-11-09T13:36:07Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
The paper studies existing methods in this field via a Systematic Literature Review ( SLR)
The SLR provides insights into challenges and areas for future research that could enhance the usefulness and applicability of prescriptive process monitoring methods.
arXiv Detail & Related papers (2021-12-03T08:06:24Z) - ProcessTransformer: Predictive Business Process Monitoring with
Transformer Network [0.06445605125467573]
We propose ProcessTransformer, an approach for learning high-level representations from event logs with an attention-based network.
Our model incorporates long-range memory and relies on a self-attention mechanism to establish dependencies between a multitude of event sequences and corresponding outputs.
arXiv Detail & Related papers (2021-04-01T18:58:46Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
We introduce the CoCoMoT (Computing Conformance Modulo Theories) framework.
First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering.
arXiv Detail & Related papers (2021-03-18T20:22:50Z) - Process Comparison Using Object-Centric Process Cubes [69.68068088508505]
In real-life business processes, different behaviors exist that make the overall process too complex to interpret.
Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes.
We propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs.
arXiv Detail & Related papers (2021-03-12T10:08:28Z) - On the Composition of the Long Tail of Business Processes: Implications
from a Process Mining Study [0.0]
Digital transformation forces companies to rethink their processes to meet current customer needs. Business Process Management (BPM) can provide the means to structure and tackle this change.
Most approaches to BPM face restrictions on the number of processes they can optimize at a time due to complexity and resource restrictions.
Investigating this shortcoming, the concept of the long tail of business processes suggests a hybrid approach that entails managing important processes centrally, while incrementally improving the majority of processes at their place of execution.
arXiv Detail & Related papers (2020-11-26T09:04:15Z) - Analogous Process Structure Induction for Sub-event Sequence Prediction [111.10887596684276]
We propose an Analogous Process Structure Induction APSI framework to predict the whole sub-event sequence of previously unseen processes.
As our experiments and analysis indicate, APSI supports the generation of meaningful sub-event sequences for unseen processes and can help predict missing events.
arXiv Detail & Related papers (2020-10-16T17:35:40Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.