Optimized Global Perturbation Attacks For Brain Tumour ROI Extraction
From Binary Classification Models
- URL: http://arxiv.org/abs/2211.04926v1
- Date: Wed, 9 Nov 2022 14:52:36 GMT
- Title: Optimized Global Perturbation Attacks For Brain Tumour ROI Extraction
From Binary Classification Models
- Authors: Sajith Rajapaksa, Farzad Khalvati
- Abstract summary: We propose a weakly supervised approach to obtain regions of interest using binary class labels.
We also propose a novel objective function to train the generator model based on a pretrained binary classification model.
- Score: 0.304585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques have greatly benefited computer-aided diagnostic
systems. However, unlike other fields, in medical imaging, acquiring large
fine-grained annotated datasets such as 3D tumour segmentation is challenging
due to the high cost of manual annotation and privacy regulations. This has
given interest to weakly-supervise methods to utilize the weakly labelled data
for tumour segmentation. In this work, we propose a weakly supervised approach
to obtain regions of interest using binary class labels. Furthermore, we
propose a novel objective function to train the generator model based on a
pretrained binary classification model. Finally, we apply our method to the
brain tumour segmentation problem in MRI.
Related papers
- MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
This study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net framework, which integrates multibranch residual blocks and fused attention into the model.
The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images.
arXiv Detail & Related papers (2024-11-04T09:03:43Z) - Attention-Enhanced Hybrid Feature Aggregation Network for 3D Brain Tumor Segmentation [0.9897828700959131]
Glioblastoma is a highly aggressive and malignant brain tumor type that requires early diagnosis and prompt intervention.
To address this challenge, Artificial Intelligence (AI)-driven approaches in healthcare have generated interest in efficiently diagnosing and evaluating brain tumors.
In our approach, we utilize a multi-scale, attention-guided and hybrid U-Net-shaped model -- GLIMS -- to perform 3D brain tumor segmentation.
arXiv Detail & Related papers (2024-03-15T00:52:17Z) - Generating 3D Brain Tumor Regions in MRI using Vector-Quantization
Generative Adversarial Networks [5.380977479547755]
We present a novel framework that uses vector-quantization GAN and a transformer incorporating masked token modeling to generate high-resolution and diverse 3D brain tumor ROIs.
Our proposed method has the potential to facilitate an accurate diagnosis of rare brain tumors using MRI scans.
arXiv Detail & Related papers (2023-10-02T14:39:10Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Deep Superpixel Generation and Clustering for Weakly Supervised
Segmentation of Brain Tumors in MR Images [0.0]
This work proposes the use of a superpixel generation model and a superpixel clustering model to enable weakly supervised brain tumor segmentations.
We used 2D slices of magnetic resonance brain scans from the Multimodal Brain Tumor Challenge 2020 dataset and labels indicating the presence of tumors to train the pipeline.
Our method achieved a mean Dice coefficient of 0.691 and a mean 95% Hausdorff distance of 18.1, outperforming existing superpixel-based weakly supervised segmentation methods.
arXiv Detail & Related papers (2022-09-20T18:08:34Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Brain Tumor Detection and Classification based on Hybrid Ensemble
Classifier [0.6091702876917281]
We propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method.
It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant.
Our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.
arXiv Detail & Related papers (2021-01-01T11:52:29Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.