論文の概要: Deep Learning based Computer Vision Methods for Complex Traffic
Environments Perception: A Review
- arxiv url: http://arxiv.org/abs/2211.05120v1
- Date: Wed, 9 Nov 2022 05:16:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 15:59:58.470875
- Title: Deep Learning based Computer Vision Methods for Complex Traffic
Environments Perception: A Review
- Title(参考訳): 複雑な交通環境知覚のための深層学習に基づくコンピュータビジョン手法の検討
- Authors: Talha Azfar, Jinlong Li, Hongkai Yu, Ruey Long Cheu, Yisheng Lv,
Ruimin Ke
- Abstract要約: 本稿では、インテリジェントトランスポートシステム(ITS)と自律運転(AD)におけるコンピュータビジョンの応用に関する広範な文献レビューを行った。
データ課題は、トレーニングデータの収集とラベル付け、実際の状況への関連性、データセット固有のバイアス、処理に必要な大量のデータ、プライバシの懸念に関連している。
ディープラーニング(DL)モデルは通常、組み込みハードウェアのリアルタイム処理には複雑すぎるため、説明可能性や一般化性が欠如しており、現実世界の設定ではテストが難しい。
- 参考スコア(独自算出の注目度): 22.53793239186955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision applications in intelligent transportation systems (ITS) and
autonomous driving (AD) have gravitated towards deep neural network
architectures in recent years. While performance seems to be improving on
benchmark datasets, many real-world challenges are yet to be adequately
considered in research. This paper conducted an extensive literature review on
the applications of computer vision in ITS and AD, and discusses challenges
related to data, models, and complex urban environments. The data challenges
are associated with the collection and labeling of training data and its
relevance to real world conditions, bias inherent in datasets, the high volume
of data needed to be processed, and privacy concerns. Deep learning (DL) models
are commonly too complex for real-time processing on embedded hardware, lack
explainability and generalizability, and are hard to test in real-world
settings. Complex urban traffic environments have irregular lighting and
occlusions, and surveillance cameras can be mounted at a variety of angles,
gather dirt, shake in the wind, while the traffic conditions are highly
heterogeneous, with violation of rules and complex interactions in crowded
scenarios. Some representative applications that suffer from these problems are
traffic flow estimation, congestion detection, autonomous driving perception,
vehicle interaction, and edge computing for practical deployment. The possible
ways of dealing with the challenges are also explored while prioritizing
practical deployment.
- Abstract(参考訳): インテリジェントトランスポートシステム(ITS)と自律運転(AD)におけるコンピュータビジョンの応用は、近年、ディープニューラルネットワークアーキテクチャに向けて加速している。
ベンチマークデータセットのパフォーマンスは改善されているようだが、多くの現実世界の課題はまだ研究において十分に考慮されていない。
本稿では,ITSとADにおけるコンピュータビジョンの応用に関する広範な文献レビューを行い,データ,モデル,複雑な都市環境に関する課題について論じる。
データの課題は、トレーニングデータの収集とラベル付け、現実世界の状況との関係、データセットに固有のバイアス、処理に必要な大量のデータ、プライバシの懸念に関連しています。
ディープラーニング(DL)モデルは通常、組み込みハードウェアのリアルタイム処理には複雑すぎるため、説明可能性や一般化性が欠如しており、現実世界の設定ではテストが難しい。
複雑な都市交通環境は不規則な照明と閉塞があり、監視カメラは様々な角度に設置でき、汚れを収集し、風の中で揺れる。
これらの問題に苦しむ典型的な応用としては、交通量の推定、渋滞検出、自動運転認識、車両の相互作用、エッジコンピューティングなどがある。
現実的なデプロイメントを優先しながら、課題に対処する方法も検討されている。
関連論文リスト
- CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
カメラ映像から周囲の交通機関の事故を正確にかつ迅速に予測することは、自動運転車(AV)の安全性に不可欠である
本研究は, CRASH と呼ばれる, AV の新たな事故予測フレームワークを提案する。
オブジェクト検出、特徴抽出、オブジェクト認識モジュール、コンテキスト認識モジュール、多層融合の5つのコンポーネントをシームレスに統合する。
私たちのモデルは、平均精度(AP)や平均到達時間(mTTA)といった重要な評価指標において、既存のトップベースラインを超えています。
論文 参考訳(メタデータ) (2024-07-25T04:12:49Z) - Big Data and Deep Learning in Smart Cities: A Comprehensive Dataset for
AI-Driven Traffic Accident Detection and Computer Vision Systems [0.0]
本研究は,スマートシティにおける最先端技術の適用について考察する。
本稿では,交通事故検出のための新しい包括的データセットを提案する。
このデータセットは学術研究を推進し、リアルタイムの事故検出アプリケーションを強化することが期待されている。
論文 参考訳(メタデータ) (2024-01-07T21:50:24Z) - TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex
Traffic Scenarios [23.831048188389026]
トラヒックビデオにおける多目的追跡は、交通監視の精度を高め、道路安全対策を促進する大きな可能性を秘めている。
トラヒックビデオにおけるマルチオブジェクトトラッキングのための既存のデータセットは、制限されたインスタンスや単一のクラスにフォーカスすることが多い。
複雑なシナリオを持つ多様なトラフィック状況をカバーするために設計された、広範なデータセットであるTrafficMOTを紹介する。
論文 参考訳(メタデータ) (2023-11-30T18:59:56Z) - Smart Infrastructure: A Research Junction [5.172393727004225]
本稿では,ドイツ・アシャッフェンブルクの公的な市内交差点に位置する視覚センサ技術を備えたインテリジェントな研究基盤について紹介する。
マルチビューカメラシステムは、交通状況を監視し、道路利用者の行動を知覚する。
このシステムは、データ生成の研究、新しいHADセンサーシステム、アルゴリズム、人工知能(AI)トレーニング戦略の評価に使用される。
論文 参考訳(メタデータ) (2023-07-12T14:04:12Z) - The IMPTC Dataset: An Infrastructural Multi-Person Trajectory and
Context Dataset [4.413278371057897]
市内の交差点は、怪我や致命的な事故で最も重要な交通エリアである。
われわれは、ドイツのインテリジェントな公共都市交差点と視覚センサー技術を使用している。
得られたデータセットは8時間の計測データから構成される。
論文 参考訳(メタデータ) (2023-07-12T13:46:20Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
ShiFTは、自動運転のための最大規模のマルチタスク合成データセットである。
曇り、雨と霧の強さ、昼の時間、車と歩行者の密度を個別に連続的に変化させる。
私たちのデータセットとベンチマークツールキットはwww.vis.xyz/shift.comで公開されています。
論文 参考訳(メタデータ) (2022-06-16T17:59:52Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
マルチオブジェクトトラッキング(MOT)は、自動運転車の安全な配備の前提条件である。
観測対象間の依存関係をエンコードするトラック埋め込みの計算に注目するMOTに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-18T03:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。