論文の概要: A Survey on Data-Driven Modeling of Human Drivers' Lane-Changing Decisions
- arxiv url: http://arxiv.org/abs/2505.06680v1
- Date: Sat, 10 May 2025 16:09:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.983423
- Title: A Survey on Data-Driven Modeling of Human Drivers' Lane-Changing Decisions
- Title(参考訳): ドライバーの車線変更決定におけるデータ駆動モデルの検討
- Authors: Linxuan Huang, Dong-Fan Xie, Li Li, Zhengbing He,
- Abstract要約: 重大な運転操作である車線変更(LC)の挙動は、運転安全性と交通力学に大きな影響を及ぼす。
従来のLC決定(LCD)モデルは、特定の環境では有効であるが、しばしば振る舞いの不均一性と複雑な相互作用を単純化する。
データ駆動型アプローチは、リッチな経験的データと機械学習を活用して、潜在的な意思決定パターンをデコードすることで、これらのギャップに対処する。
- 参考スコア(独自算出の注目度): 8.125436462968654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lane-changing (LC) behavior, a critical yet complex driving maneuver, significantly influences driving safety and traffic dynamics. Traditional analytical LC decision (LCD) models, while effective in specific environments, often oversimplify behavioral heterogeneity and complex interactions, limiting their capacity to capture real LCD. Data-driven approaches address these gaps by leveraging rich empirical data and machine learning to decode latent decision-making patterns, enabling adaptive LCD modeling in dynamic environments. In light of the rapid development of artificial intelligence and the demand for data-driven models oriented towards connected vehicles and autonomous vehicles, this paper presents a comprehensive survey of data-driven LCD models, with a particular focus on human drivers LC decision-making. It systematically reviews the modeling framework, covering data sources and preprocessing, model inputs and outputs, objectives, structures, and validation methods. This survey further discusses the opportunities and challenges faced by data-driven LCD models, including driving safety, uncertainty, as well as the integration and improvement of technical frameworks.
- Abstract(参考訳): 重大な運転操作である車線変更(LC)の挙動は、運転安全性と交通力学に大きな影響を及ぼす。
従来のLC決定(LCD)モデルは、特定の環境では有効であるが、しばしば振る舞いの不均一性と複雑な相互作用を単純化し、実際のLCDを捉える能力を制限する。
データ駆動型アプローチは、リッチな経験的データと機械学習を活用して遅延決定パターンをデコードし、動的環境における適応的なLCDモデリングを可能にすることで、これらのギャップに対処する。
本稿では、人工知能の急速な発展と、コネクテッドカーや自動運転車を指向したデータ駆動型モデルの需要を踏まえ、データ駆動型LCDモデルの包括的調査を行い、特に人間のドライバーLC決定に焦点を当てた。
モデリングフレームワークを体系的にレビューし、データソースと前処理、モデル入力と出力、目的、構造、バリデーションメソッドを網羅する。
この調査では、安全運転、不確実性、技術フレームワークの統合と改善など、データ駆動型LCDモデルで直面する機会と課題をさらに議論する。
関連論文リスト
- A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models [15.34704164931383]
自動車追従モデル (CFMs) は交通流解析と自律運転の基礎である。
本稿では,事前学習型大規模言語モデル(LLM)の一般化能力を軽量かつ安定性に配慮したニューラルアーキテクチャに蒸留する知識情報深層学習(KIDL)パラダイムを提案する。
KIDLを実世界のNGSIMおよびHighDデータセット上で評価し、その性能を代表的物理ベース、データ駆動、ハイブリッドCFMと比較した。
論文 参考訳(メタデータ) (2025-04-19T09:33:02Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
世界モデルとビデオ生成は、自動運転の領域において重要な技術である。
本稿では,この2つの技術の関係について検討する。
映像生成モデルと世界モデルとの相互作用を分析することにより,重要な課題と今後の研究方向性を明らかにする。
論文 参考訳(メタデータ) (2024-11-05T08:58:35Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
自動運転技術の継続的な進化には、多様なダイナミックな交通環境に適応できる自動車追従モデルが必要である。
従来の学習ベースのモデルは、連続的な学習能力の欠如により、目に見えないトラフィックパターンに遭遇する際のパフォーマンス低下に悩まされることが多い。
本稿では,この制限に対処する連続学習に基づく新しい車追従モデルを提案する。
論文 参考訳(メタデータ) (2024-07-17T06:32:52Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Deep Learning based Computer Vision Methods for Complex Traffic
Environments Perception: A Review [22.53793239186955]
本稿では、インテリジェントトランスポートシステム(ITS)と自律運転(AD)におけるコンピュータビジョンの応用に関する広範な文献レビューを行った。
データ課題は、トレーニングデータの収集とラベル付け、実際の状況への関連性、データセット固有のバイアス、処理に必要な大量のデータ、プライバシの懸念に関連している。
ディープラーニング(DL)モデルは通常、組み込みハードウェアのリアルタイム処理には複雑すぎるため、説明可能性や一般化性が欠如しており、現実世界の設定ではテストが難しい。
論文 参考訳(メタデータ) (2022-11-09T05:16:01Z) - Predicting Take-over Time for Autonomous Driving with Real-World Data:
Robust Data Augmentation, Models, and Evaluation [11.007092387379076]
我々は、運転者向けカメラビューで動作するコンピュータビジョンアルゴリズムによって作成される中高レベルの機能で動作するテイクオーバー時間(TOT)モデルを開発し、訓練する。
拡張データでサポートされたTOTモデルを用いて,遅延なく連続的なテイクオーバー時間を推定できることを示す。
論文 参考訳(メタデータ) (2021-07-27T16:39:50Z) - Identification of the nonlinear steering dynamics of an autonomous
vehicle [0.0]
現代の車両は、モデリングが難しいデジタルおよびメカトロニクスコンポーネントの広い配列を持っています。
関連する車両のダイナミクスをキャプチャするためにデータ駆動モデリングを使用することは魅力的です。
ニューラルネットワークベースのサブスペースエンコーダが基礎となるダイナミクスをうまくキャプチャできることを示した。
論文 参考訳(メタデータ) (2021-05-10T17:32:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。