Variational Quantum Kernels with Task-Specific Quantum Metric Learning
- URL: http://arxiv.org/abs/2211.05225v1
- Date: Tue, 8 Nov 2022 18:36:25 GMT
- Title: Variational Quantum Kernels with Task-Specific Quantum Metric Learning
- Authors: Daniel T. Chang
- Abstract summary: Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
- Score: 0.8722210937404288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum kernel methods, i.e., kernel methods with quantum kernels, offer
distinct advantages as a hybrid quantum-classical approach to quantum machine
learning (QML), including applicability to Noisy Intermediate-Scale Quantum
(NISQ) devices and usage for solving all types of machine learning problems.
Kernel methods rely on the notion of similarity between points in a higher
(possibly infinite) dimensional feature space. For machine learning, the notion
of similarity assumes that points close in the feature space should be close in
the machine learning task space. In this paper, we discuss the use of
variational quantum kernels with task-specific quantum metric learning to
generate optimal quantum embeddings (a.k.a. quantum feature encodings) that are
specific to machine learning tasks. Such task-specific optimal quantum
embeddings, implicitly supporting feature selection, are valuable not only to
quantum kernel methods in improving the latter's performance, but they can also
be valuable to non-kernel QML methods based on parameterized quantum circuits
(PQCs) as pretrained embeddings and for transfer learning. This further
demonstrates the quantum utility, and quantum advantage (with
classically-intractable quantum embeddings), of quantum kernel methods.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Continuous-variable quantum kernel method on a programmable photonic quantum processor [0.0]
We experimentally prove that the CV quantum kernel method successfully classifies several datasets robustly even under the experimental imperfections.
This demonstration sheds light on the utility of CV quantum systems for QML and should stimulate further study in other CV QML algorithms.
arXiv Detail & Related papers (2024-05-02T08:33:31Z) - A Kerr kernel quantum learning machine [0.0]
We propose a quantum hardware kernel implementation scheme based on superconducting quantum circuits.
The scheme does not use qubits or quantum circuits but rather exploits the analogue features of Kerr modes.
arXiv Detail & Related papers (2024-04-02T09:50:33Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Several fitness functions and entanglement gates in quantum kernel
generation [3.6953740776904924]
Entanglement, a fundamental concept in quantum mechanics, assumes a central role in quantum computing.
We investigate the optimal number of entanglement gates in the quantum kernel feature maps by a multi-objective genetic algorithm.
Our findings offer valuable guidance for enhancing the efficiency and accuracy of quantum machine learning algorithms.
arXiv Detail & Related papers (2023-08-22T18:35:51Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Parameterized Quantum Circuits with Quantum Kernels for Machine
Learning: A Hybrid Quantum-Classical Approach [0.8722210937404288]
Kernel ized Quantum Circuits (PQCs) are generally used in the hybrid approach to Quantum Machine Learning (QML)
We discuss some important aspects of PQCs with quantum kernels including PQCs, quantum kernels, quantum kernels with quantum advantage, and the trainability of quantum kernels.
arXiv Detail & Related papers (2022-09-28T22:14:41Z) - Optimal quantum kernels for small data classification [0.0]
We show an algorithm for constructing quantum kernels for support vector machines that adapts quantum gate sequences to data.
The performance of the resulting quantum models for classification problems with a small number of training points significantly exceeds that of optimized classical models.
arXiv Detail & Related papers (2022-03-25T18:26:44Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.