Optimal quantum kernels for small data classification
- URL: http://arxiv.org/abs/2203.13848v1
- Date: Fri, 25 Mar 2022 18:26:44 GMT
- Title: Optimal quantum kernels for small data classification
- Authors: Elham Torabian and Roman V. Krems
- Abstract summary: We show an algorithm for constructing quantum kernels for support vector machines that adapts quantum gate sequences to data.
The performance of the resulting quantum models for classification problems with a small number of training points significantly exceeds that of optimized classical models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While quantum machine learning (ML) has been proposed to be one of the most
promising applications of quantum computing, how to build quantum ML models
that outperform classical ML remains a major open question. Here, we
demonstrate an algorithm for constructing quantum kernels for support vector
machines that adapts quantum gate sequences to data. The algorithm includes
three essential ingredients: greedy search in the space of quantum circuits,
Bayesian information criterion as circuit selection metric and Bayesian
optimization of the parameters of the optimal quantum circuit identified. The
performance of the resulting quantum models for classification problems with a
small number of training points significantly exceeds that of optimized
classical models with conventional kernels. In addition, we illustrate the
possibility of mapping quantum circuits onto molecular fingerprints and show
that performant quantum kernels can be isolated in the resulting chemical
space. This suggests that methods developed for optimization and interpolation
of molecular properties across chemical spaces can be used for building quantum
circuits for quantum machine learning with enhanced performance.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Several fitness functions and entanglement gates in quantum kernel
generation [3.6953740776904924]
Entanglement, a fundamental concept in quantum mechanics, assumes a central role in quantum computing.
We investigate the optimal number of entanglement gates in the quantum kernel feature maps by a multi-objective genetic algorithm.
Our findings offer valuable guidance for enhancing the efficiency and accuracy of quantum machine learning algorithms.
arXiv Detail & Related papers (2023-08-22T18:35:51Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - Parameterized Quantum Circuits with Quantum Kernels for Machine
Learning: A Hybrid Quantum-Classical Approach [0.8722210937404288]
Kernel ized Quantum Circuits (PQCs) are generally used in the hybrid approach to Quantum Machine Learning (QML)
We discuss some important aspects of PQCs with quantum kernels including PQCs, quantum kernels, quantum kernels with quantum advantage, and the trainability of quantum kernels.
arXiv Detail & Related papers (2022-09-28T22:14:41Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.