Coordinating CAV Swarms at Intersections with a Deep Learning Model
- URL: http://arxiv.org/abs/2211.05297v1
- Date: Thu, 10 Nov 2022 02:14:36 GMT
- Title: Coordinating CAV Swarms at Intersections with a Deep Learning Model
- Authors: Jiawei Zhang, Shen Li, Li Li
- Abstract summary: Connected and automated vehicles (CAVs) are viewed as a special kind of robots that have the potential to significantly improve the safety and efficiency of traffic.
Here, we introduce a novel cooperative driving algorithm (AlphaOrder) that combines offline deep learning and online tree searching to find a near-optimal passing order in real-time.
- Score: 24.188603833058146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connected and automated vehicles (CAVs) are viewed as a special kind of
robots that have the potential to significantly improve the safety and
efficiency of traffic. In contrast to many swarm robotics studies that are
demonstrated in labs by employing a small number of robots, CAV studies aims to
achieve cooperative driving of unceasing robot swarm flows. However, how to get
the optimal passing order of such robot swarm flows even for a signal-free
intersection is an NP-hard problem (specifically, enumerating based algorithm
takes days to find the optimal solution to a 20-CAV scenario). Here, we
introduce a novel cooperative driving algorithm (AlphaOrder) that combines
offline deep learning and online tree searching to find a near-optimal passing
order in real-time. AlphaOrder builds a pointer network model from solved
scenarios and generates near-optimal passing orders instantaneously for new
scenarios. Furthermore, our approach provides a general approach to managing
preemptive resource sharing between swarm robotics (e.g., scheduling multiple
automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) at
conflicting areas
Related papers
- Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Multi-agent Path Finding for Mixed Autonomy Traffic Coordination [7.857093164418706]
We propose a Behavior Prediction Kinematic Priority Based Search (BK-PBS) to forecast HDV responses to CAV maneuvers.
Our work is directly applicable to many scenarios of multi-human multi-robot coordination.
arXiv Detail & Related papers (2024-09-05T19:37:01Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Multi-agent Path Finding for Cooperative Autonomous Driving [8.8305853192334]
We devise an optimal and complete algorithm, Order-based Search with Kinematics Arrival Time Scheduling (OBS-KATS), which significantly outperforms existing algorithms.
Our work is directly applicable to many similarly scaled traffic and multi-robot scenarios with directed lanes.
arXiv Detail & Related papers (2024-02-01T04:39:15Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset [103.35624417260541]
Decentralized vehicle coordination is useful in understructured road environments.
We collect the Berkeley DeepDrive Drone dataset to study implicit "social etiquette" observed by nearby drivers.
The dataset is of primary interest for studying decentralized multiagent planning employed by human drivers and for computer vision in remote sensing settings.
arXiv Detail & Related papers (2022-09-19T05:06:57Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - Decentralized Global Connectivity Maintenance for Multi-Robot
Navigation: A Reinforcement Learning Approach [12.649986200029717]
This work investigates how to navigate a multi-robot team in unknown environments while maintaining connectivity.
We propose a reinforcement learning approach to develop a decentralized policy, which is shared among multiple robots.
We validate the effectiveness of the proposed approach by comparing different combinations of connectivity constraints and behavior cloning.
arXiv Detail & Related papers (2021-09-17T13:20:19Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we aim to find collision-free paths for multiple cellular-connected UAVs.
We propose an offline temporal difference (TD) learning algorithm with online signal-to-interference-plus-noise ratio mapping to solve the problem.
arXiv Detail & Related papers (2021-04-09T16:52:33Z) - Learning Autoencoders with Relational Regularization [89.53065887608088]
A new framework is proposed for learning autoencoders of data distributions.
We minimize the discrepancy between the model and target distributions, with a emphrelational regularization
We implement the framework with two scalable algorithms, making it applicable for both probabilistic and deterministic autoencoders.
arXiv Detail & Related papers (2020-02-07T17:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.