論文の概要: Fairness and bias correction in machine learning for depression
prediction: results from four different study populations
- arxiv url: http://arxiv.org/abs/2211.05321v2
- Date: Mon, 17 Apr 2023 08:36:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 23:25:15.166913
- Title: Fairness and bias correction in machine learning for depression
prediction: results from four different study populations
- Title(参考訳): うつ病予測のための機械学習における公平性とバイアス補正:4つの異なる研究集団による結果
- Authors: Vien Ngoc Dang, Anna Cascarano, Rosa H. Mulder, Charlotte Cecil, Maria
A. Zuluaga, Jer\'onimo Hern\'andez-Gonz\'alez, Karim Lekadir
- Abstract要約: スティグマと不平等は精神医療、特に低人口において存在する。
データから学習した機械学習モデルは、すでに社会に存在する構造的バイアスを強化することができる。
標準緩和技術と我々のポストホック法は不公平バイアスのレベルを下げるのに有効である。
- 参考スコア(独自算出の注目度): 2.6984947753781494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant level of stigma and inequality exists in mental healthcare,
especially in under-served populations, which spreads through collected data.
When not properly accounted for, machine learning (ML) models learned from data
can reinforce the structural biases already present in society. Here, we
present a systematic study of bias in ML models designed to predict depression
in four different case studies covering different countries and populations. We
find that standard ML approaches show regularly biased behaviors. However, we
show that standard mitigation techniques, and our own post-hoc method, can be
effective in reducing the level of unfair bias. We provide practical
recommendations to develop ML models for depression risk prediction with
increased fairness and trust in the real world. No single best ML model for
depression prediction provides equality of outcomes. This emphasizes the
importance of analyzing fairness during model selection and transparent
reporting about the impact of debiasing interventions.
- Abstract(参考訳): 精神医療、特に、収集されたデータを通して広がる過小評価された人口には、かなりのレベルのスティグマと不平等が存在する。
適切に説明されていない場合、データから学習した機械学習(ML)モデルは、すでに社会に存在している構造バイアスを強化することができる。
本稿では、異なる国と人口をカバーする4つのケーススタディにおいて、抑うつを予測するために設計されたMLモデルにおけるバイアスの体系的研究について述べる。
標準MLアプローチは定期的にバイアスのある振る舞いを示す。
しかし, 標準緩和技術, および我々のポストホック法は, 不公平バイアスの低減に有効であることを示す。
我々は,実世界における公平性と信頼感を高めた抑うつリスク予測のためのmlモデルを開発するための実践的な推奨を提供する。
うつ病予測のための最高のMLモデルが結果の平等を提供することはない。
これは、モデル選択における公平さの分析と、デバイアス介入の影響に関する透過的な報告の重要性を強調している。
関連論文リスト
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Is Your Model "MADD"? A Novel Metric to Evaluate Algorithmic Fairness
for Predictive Student Models [0.0]
本稿では,モデルの識別行動を分析するために,モデル絶対密度距離(MADD)を提案する。
オンライン授業における学生の成功を予測するための共通課題に対するアプローチを,いくつかの共通予測分類モデルを用いて評価した。
論文 参考訳(メタデータ) (2023-05-24T16:55:49Z) - Connecting Fairness in Machine Learning with Public Health Equity [0.0]
データとモデル設計のバイアスは、特定の保護されたグループの格差をもたらし、医療における既存の不平等を増幅します。
本研究は,MLフェアネスに関する基礎文献を要約し,データとモデルのバイアスを特定し緩和するための枠組みを提案する。
ケーススタディは、このフレームワークがこれらのバイアスを防ぎ、公衆衛生における公平で公平なMLモデルの必要性を強調するためにどのように使用できるかを示している。
論文 参考訳(メタデータ) (2023-04-08T10:21:49Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - Evaluating the Fairness of Deep Learning Uncertainty Estimates in
Medical Image Analysis [3.5536769591744557]
深層学習(DL)モデルは多くの医療画像解析タスクで大きな成功を収めている。
しかし、結果として得られたモデルを実際の臨床状況に展開するには、異なるサブ集団間での堅牢性と公平性が必要である。
近年の研究では、人口統計学的サブグループにまたがるDLモデルに有意なバイアスが見られ、モデルに公平性が欠如していることが示されている。
論文 参考訳(メタデータ) (2023-03-06T16:01:30Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
本研究では, バイアスラベルを正確に把握せず, 脱バイアス胸部X線診断モデルの開発について検討した。
本稿では,まずサンプルごとのバイアスラベルをキャプチャし,予測する新しいアルゴリズム,擬似バイアスバランス学習を提案する。
提案手法は他の最先端手法よりも一貫した改善を実現した。
論文 参考訳(メタデータ) (2022-03-18T11:02:18Z) - Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems [46.93320580613236]
回帰問題に対する正規化(FaiReg)に基づく単純かつ効果的な手法を提案する。
データバランシングと敵対的トレーニングという,公正性のための2つの標準的な手法と比較する。
その結果、データバランスよりも不公平さの影響を低減できる優れた性能を示した。
論文 参考訳(メタデータ) (2022-02-02T12:26:25Z) - Assessing Social Determinants-Related Performance Bias of Machine
Learning Models: A case of Hyperchloremia Prediction in ICU Population [6.8473641147443995]
高塩素血症を予測するために構築された4つの分類器について検討した。
実験室をベースとした機能に加え, 社会的決定因子の付加は, 全患者のモデル性能を向上することがわかった。
我々は将来の研究者に、潜在的なバイアスを積極的に調整し、サブグループレポートを含むモデルを設計するよう促す。
論文 参考訳(メタデータ) (2021-11-18T03:58:50Z) - Statistical inference for individual fairness [24.622418924551315]
機械学習モデルにおける個々人の公平性の違反を検出する問題に注目する。
我々は,対向コスト関数のための一連の推論ツールを開発した。
実世界のケーススタディでツールの有用性を実証します。
論文 参考訳(メタデータ) (2021-03-30T22:49:25Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。