論文の概要: A noise based novel strategy for faster SNN training
- arxiv url: http://arxiv.org/abs/2211.05453v2
- Date: Mon, 29 May 2023 12:26:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 03:03:39.984700
- Title: A noise based novel strategy for faster SNN training
- Title(参考訳): 高速SNNトレーニングのためのノイズベース新しい戦略
- Authors: Chunming Jiang, Yilei Zhang
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、消費電力の低さと強力なバイオプロファイザビリティによって注目を集めている。
人工知能ニューラルネットワーク(ANN)-SNN変換とスパイクベースのバックプロパゲーション(BP)の2つの主要な手法には、それぞれ長所と短所がある。
本稿では,2つの手法の利点を組み合わせた新しいSNNトレーニング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are receiving increasing attention due to
their low power consumption and strong bio-plausibility. Optimization of SNNs
is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN
conversion and spike-based backpropagation (BP), both have their advantages and
limitations. For ANN-to-SNN conversion, it requires a long inference time to
approximate the accuracy of ANN, thus diminishing the benefits of SNN. With
spike-based BP, training high-precision SNNs typically consumes dozens of times
more computational resources and time than their ANN counterparts. In this
paper, we propose a novel SNN training approach that combines the benefits of
the two methods. We first train a single-step SNN(T=1) by approximating the
neural potential distribution with random noise, then convert the single-step
SNN(T=1) to a multi-step SNN(T=N) losslessly. The introduction of Gaussian
distributed noise leads to a significant gain in accuracy after conversion. The
results show that our method considerably reduces the training and inference
times of SNNs while maintaining their high accuracy. Compared to the previous
two methods, ours can reduce training time by 65%-75% and achieves more than
100 times faster inference speed. We also argue that the neuron model augmented
with noise makes it more bio-plausible.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、消費電力の低さと強力なバイオプロファイザビリティによって注目を集めている。
SNNの最適化は難しい課題である。
人工知能ニューラルネットワーク(ANN)-SNN変換とスパイクベースのバックプロパゲーション(BP)の2つの主要な手法には、それぞれ長所と短所がある。
ANN-to-SNN変換では、ANNの精度を近似するために長い推測時間を必要とするため、SNNの利点は減少する。
スパイクベースのBPでは、高精度SNNのトレーニングは通常、ANNの数十倍の計算資源と時間を消費する。
本稿では,2つの手法の利点を組み合わせた新しいSNNトレーニング手法を提案する。
まず, 単一ステップSNN(T=1)をランダムノイズで近似し, 単一ステップSNN(T=1)を多ステップSNN(T=N)に変換する。
ガウス分布ノイズの導入は変換後の精度を大幅に向上させる。
その結果,高い精度を維持しつつ,snsの学習時間と推論時間を大幅に削減できることがわかった。
従来の2つの手法と比較して、トレーニング時間は65%-75%削減でき、推論速度の100倍以上の速さで達成できる。
また、ノイズで強化されたニューロンモデルにより、より生物学的に楽観的であるとも主張する。
関連論文リスト
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - Noise Adaptor in Spiking Neural Networks [4.568827262994048]
低遅延スパイクニューラルネットワーク(SNN)アルゴリズムは大きな関心を集めている。
低遅延SNNを構築する最も効率的な方法の1つは、事前訓練された低ビット人工ニューラルネットワーク(ANN)をSNNに変換することである。
SNNを低ビットのANNから変換すると、時折ノイズが発生する可能性がある。
論文 参考訳(メタデータ) (2023-12-08T16:57:01Z) - SEENN: Towards Temporal Spiking Early-Exit Neural Networks [26.405775809170308]
スパイキングニューラルネットワーク(SNN)は、最近、従来のニューラルネットワーク(ANN)の生物学的にもっともらしい代替品として人気が高まっている。
本研究では,SNNにおける時間経過の微調整について検討する。
時間ステップ数を動的に調整することにより、SEENNは推論中の平均時間ステップ数を著しく削減する。
論文 参考訳(メタデータ) (2023-04-02T15:57:09Z) - Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency
Spiking Neural Networks [22.532709609646066]
スパイキングニューラルネットワーク(SNN)は、低消費電力とニューロモルフィックハードウェアにおける高速推論の特徴的な特性により、大きな注目を集めている。
ディープSNNを得る最も効果的な方法として、ANN-SNN変換は大規模データセット上でのANNと同等のパフォーマンスを達成した。
本稿では,ANN-SNN変換誤差を理論的に解析し,SNNの活性化関数を推定する。
SNNとANNの変換誤差はゼロであり、高精度で超低レイテンシのSNNを実現することができることを示す。
論文 参考訳(メタデータ) (2023-03-08T03:04:53Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
スパイクニューラルネットワークは、低消費電力環境における効率的な計算モデルである。
本稿では,SNNを高速かつメモリ効率で学習するためのSNN-to-ANN(SNN2ANN)フレームワークを提案する。
実験結果から,SNN2ANNをベースとしたモデルがベンチマークデータセットで良好に動作することが示された。
論文 参考訳(メタデータ) (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
我々は,BNNを大規模モデルに効率的にスケールするための時空間BNNを設計する。
バニラBNNと比較して,本手法はトレーニング時間とパラメータ数を著しく削減し,BNNのスケールアップに有効である。
論文 参考訳(メタデータ) (2021-12-12T17:13:14Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
本稿では,全データ学習による音声強調のためのディープタイム遅延ニューラルネットワーク(TDNN)を提案する。
トレーニングデータを完全に活用するために,音声強調のための完全なデータ学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-11T06:32:37Z) - Training Deep Spiking Neural Networks [0.0]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)とニューロモルフィックハードウェアは、エネルギー効率を桁違いに高める可能性がある。
CIFAR100およびImagenetteオブジェクト認識データセット上で、ResNet50アーキテクチャでSNNをトレーニングすることが可能であることを示す。
訓練されたSNNは、類似のANNと比較して精度が劣るが、数桁の推論時間ステップを必要とする。
論文 参考訳(メタデータ) (2020-06-08T09:47:05Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。