論文の概要: AnimeRun: 2D Animation Visual Correspondence from Open Source 3D Movies
- arxiv url: http://arxiv.org/abs/2211.05709v1
- Date: Thu, 10 Nov 2022 17:26:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 15:31:56.806132
- Title: AnimeRun: 2D Animation Visual Correspondence from Open Source 3D Movies
- Title(参考訳): AnimeRun:オープンソース3D映画からの2Dアニメーション対応
- Authors: Li Siyao, Yuhang Li, Bo Li, Chao Dong, Ziwei Liu, Chen Change Loy
- Abstract要約: 既存の2次元漫画のデータセットは、単純なフレーム構成と単調な動きに悩まされている。
我々は,オープンソースの3D映画を2Dスタイルのフルシーンに変換することによって,新しい2Dアニメーション視覚対応データセットAnimeRunを提案する。
分析の結果,提案したデータセットは画像合成において実際のアニメに似るだけでなく,既存のデータセットと比較してよりリッチで複雑な動きパターンを持つことがわかった。
- 参考スコア(独自算出の注目度): 98.65469430034246
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing correspondence datasets for two-dimensional (2D) cartoon suffer from
simple frame composition and monotonic movements, making them insufficient to
simulate real animations. In this work, we present a new 2D animation visual
correspondence dataset, AnimeRun, by converting open source three-dimensional
(3D) movies to full scenes in 2D style, including simultaneous moving
background and interactions of multiple subjects. Our analyses show that the
proposed dataset not only resembles real anime more in image composition, but
also possesses richer and more complex motion patterns compared to existing
datasets. With this dataset, we establish a comprehensive benchmark by
evaluating several existing optical flow and segment matching methods, and
analyze shortcomings of these methods on animation data. Data, code and other
supplementary materials are available at
https://lisiyao21.github.io/projects/AnimeRun.
- Abstract(参考訳): 既存の2次元漫画の対応データセットは単純なフレーム構成と単調な動きに悩まされており、実際のアニメーションをシミュレートするには不十分である。
本研究では,オープンソース3次元(3D)映画を2Dスタイルのフルシーンに変換することで,複数の被験者の同時移動と対話を含む2次元アニメーション映像対応データセットAnimeRunを提案する。
解析の結果,提案するデータセットは画像合成よりも実際のアニメに近いだけでなく,既存のデータセットよりもリッチで複雑な動きパターンを持つことがわかった。
本データセットでは,既存の光学フローとセグメントマッチング手法を評価し,これらの手法の欠点をアニメーションデータで解析することにより,総合的なベンチマークを確立する。
データ、コード、その他の追加資料はhttps://lisiyao21.github.io/projects/AnimeRun.orgで入手できる。
関連論文リスト
- MMHead: Towards Fine-grained Multi-modal 3D Facial Animation [68.04052669266174]
大規模なマルチモーダル3次元顔アニメーションデータセットMMHeadを構築した。
MMHeadは、49時間の3D顔の動きシーケンス、音声、リッチな階層的なテキストアノテーションで構成されている。
MMHeadデータセットに基づいて,テキストによる3次元対話ヘッドアニメーションとテキストから3次元の顔の動き生成という,2つの新しいタスクのベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-10T09:37:01Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
単眼画像から動物体のような3D関節形状を推定することは、本質的に困難である。
本稿では,スパース画像コレクションから各物体の形状を再構築する自己教師型フレームワークARTIC3Dを提案する。
我々は、剛性部分変換の下で、描画された形状とテクスチャを微調整することで、現実的なアニメーションを作成する。
論文 参考訳(メタデータ) (2023-06-07T17:47:50Z) - 3D Cinemagraphy from a Single Image [73.09720823592092]
3Dシネマグラフィー(3D Cinemagraphy)は、3D画像と2Dアニメーションを融合させる新しい技術である。
静止画1枚を入力として、視覚コンテンツアニメーションとカメラモーションの両方を含むビデオを生成することを目標としています。
論文 参考訳(メタデータ) (2023-03-10T06:08:23Z) - Unsupervised Volumetric Animation [54.52012366520807]
非剛性変形物体の教師なし3次元アニメーションのための新しい手法を提案する。
本手法は,RGBビデオのみからオブジェクトの3次元構造とダイナミックスを学習する。
我々は,本モデルを用いて,単一ボリュームまたは少数の画像からアニマタブルな3Dオブジェクトを得ることができることを示す。
論文 参考訳(メタデータ) (2023-01-26T18:58:54Z) - SketchBetween: Video-to-Video Synthesis for Sprite Animation via
Sketches [0.9645196221785693]
2Dアニメーションは、キャラクター、エフェクト、バックグラウンドアートに使用されるゲーム開発において一般的な要素である。
アニメーションの自動化アプローチは存在するが、アニメーションを念頭に置いて設計されている。
本稿では,アニメーションの標準的なワークフローにより密着した問題定式化を提案する。
論文 参考訳(メタデータ) (2022-09-01T02:43:19Z) - AnimeCeleb: Large-Scale Animation CelebFaces Dataset via Controllable 3D
Synthetic Models [19.6347170450874]
制御可能な合成アニメーションモデルを用いて,大規模なアニメーションセロブフェイスデータセット(AnimeCeleb)を提案する。
データ生成プロセスを容易にするため,オープンな3Dソフトウェアに基づく半自動パイプラインを構築した。
これにより、多目的および多スタイルのアニメーションフェースとリッチアノテーションを備えた大規模なアニメーションフェースデータセットを構築することができる。
論文 参考訳(メタデータ) (2021-11-15T10:00:06Z) - Deep Animation Video Interpolation in the Wild [115.24454577119432]
本研究では,アニメーション・ビデオ・コードに関する問題を初めて形式的に定義・検討する。
効果的なフレームワークであるAnimeInterpを2つの専用モジュールで粗密に提案します。
特にAnimeInterpは、野生のアニメーションシナリオに良好な知覚品質と堅牢性を示します。
論文 参考訳(メタデータ) (2021-04-06T13:26:49Z) - Going beyond Free Viewpoint: Creating Animatable Volumetric Video of
Human Performances [7.7824496657259665]
本稿では,人間の演奏の高品質な映像コンテンツ作成のためのエンドツーエンドパイプラインを提案する。
セマンティックエンリッチメントと幾何学的アニメーション能力は、3Dデータに時間的一貫性を確立することによって達成される。
ポーズ編集では、キャプチャしたデータを可能な限り活用し、キャプチャしたフレームをキネマティックに変形して所望のポーズに適合させる。
論文 参考訳(メタデータ) (2020-09-02T09:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。