Quantum key distribution rates from semidefinite programming
- URL: http://arxiv.org/abs/2211.05725v2
- Date: Mon, 22 May 2023 14:15:25 GMT
- Title: Quantum key distribution rates from semidefinite programming
- Authors: Mateus Ara\'ujo, Marcus Huber, Miguel Navascu\'es, Matej Pivoluska,
Armin Tavakoli
- Abstract summary: We introduce an efficient algorithm for computing the key rate in quantum key distribution protocols.
The resulting algorithm is easy to implement and easy to use.
We use it to reanalyse experimental data to demonstrate how higher key rates can be achieved.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computing the key rate in quantum key distribution (QKD) protocols is a long
standing challenge. Analytical methods are limited to a handful of protocols
with highly symmetric measurement bases. Numerical methods can handle arbitrary
measurement bases, but either use the min-entropy, which gives a loose lower
bound to the von Neumann entropy, or rely on cumbersome dedicated algorithms.
Based on a recently discovered semidefinite programming (SDP) hierarchy
converging to the conditional von Neumann entropy, used for computing the
asymptotic key rates in the device independent case, we introduce an SDP
hierarchy that converges to the asymptotic secret key rate in the case of
characterised devices. The resulting algorithm is efficient, easy to implement
and easy to use. We illustrate its performance by recovering known bounds on
the key rate and extending high-dimensional QKD protocols to previously
intractable cases. We also use it to reanalyse experimental data to demonstrate
how higher key rates can be achieved when the full statistics are taken into
account.
Related papers
- Optimising the relative entropy under semi definite constraints -- A new tool for estimating key rates in QKD [0.0]
Finding the minimal relative entropy of two quantum states under semi definite constraints is a pivotal problem.
We provide a method that addresses this optimisation.
We build on a recently introduced integral representation of quantum relative entropy by P.E. Frenkel.
arXiv Detail & Related papers (2024-04-25T20:19:47Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Device-independent lower bounds on the conditional von Neumann entropy [10.2138250640885]
We introduce a numerical method to compute lower bounds on rates of quantum protocols.
We find substantial improvements over all previous numerical techniques.
Our method is compatible with the entropy accumulation theorem.
arXiv Detail & Related papers (2021-06-25T15:24:12Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Dimension Reduction in Quantum Key Distribution for Continuous- and
Discrete-Variable Protocols [3.749120127914018]
We develop a method to connect the infinite-dimensional description of optical continuous-variable key distribution protocols to a finite-dimensional formulation.
The secure key rates of quantum optical QKD protocols can then be evaluated using recently-developed reliable numerical methods for key rate calculations.
arXiv Detail & Related papers (2021-01-14T18:59:19Z) - Improved DIQKD protocols with finite-size analysis [2.940150296806761]
We show that positive randomness is achievable up to depolarizing noise values of $9.33%$, exceeding all previously known noise thresholds.
We also develop a modification to random-key-measurement protocols, using a pre-shared seed followed by a "seed recovery" step.
arXiv Detail & Related papers (2020-12-16T03:04:19Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Numerical Calculations of Finite Key Rate for General Quantum Key
Distribution Protocols [3.749120127914018]
We extend our pre-existing reliable, efficient, tight, and generic numerical method for calculating the key rate of device-dependent QKD protocols.
We explain how this extension preserves the reliability, efficiency, and tightness of the Hilbert method.
arXiv Detail & Related papers (2020-04-24T17:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.