Numerical Calculations of Finite Key Rate for General Quantum Key
Distribution Protocols
- URL: http://arxiv.org/abs/2004.11865v2
- Date: Wed, 24 Mar 2021 23:13:17 GMT
- Title: Numerical Calculations of Finite Key Rate for General Quantum Key
Distribution Protocols
- Authors: Ian George, Jie Lin, and Norbert L\"utkenhaus
- Abstract summary: We extend our pre-existing reliable, efficient, tight, and generic numerical method for calculating the key rate of device-dependent QKD protocols.
We explain how this extension preserves the reliability, efficiency, and tightness of the Hilbert method.
- Score: 3.749120127914018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finite key analysis of quantum key distribution (QKD) is an important tool
for any QKD implementation. While much work has been done on the framework of
finite key analysis, the application to individual protocols often relies on
the the specific protocol being simple or highly symmetric as well as
represented in small finite-dimensional Hilbert spaces. In this work, we extend
our pre-existing reliable, efficient, tight, and generic numerical method for
calculating the asymptotic key rate of device-dependent QKD protocols in
finite-dimensional Hilbert spaces to the finite key regime using the security
analysis framework of Renner. We explain how this extension preserves the
reliability, efficiency, and tightness of the asymptotic method. We then
explore examples which illustrate both the generality of our method as well as
the importance of parameter estimation and data processing within the
framework.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Quantum key distribution rates from semidefinite programming [0.0]
We introduce an efficient algorithm for computing the key rate in quantum key distribution protocols.
The resulting algorithm is easy to implement and easy to use.
We use it to reanalyse experimental data to demonstrate how higher key rates can be achieved.
arXiv Detail & Related papers (2022-11-10T17:47:37Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Numerical Method for Finite-size Security Analysis of Quantum Key
Distribution [1.2891210250935146]
We develop a finite-size security analysis against general attacks for general QKD protocols.
Our result shows that the finite-size key rate can surpass the linear key-rate bound in a realistic communication time.
arXiv Detail & Related papers (2021-11-16T09:10:56Z) - Security analysis method for practical quantum key distribution with
arbitrary encoding schemes [7.321809883860193]
We propose a security analysis method without restriction on encoding schemes.
We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol.
Our work has the potential to become a reference standard for the security analysis of practical QKD.
arXiv Detail & Related papers (2021-09-10T09:53:33Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Dimension Reduction in Quantum Key Distribution for Continuous- and
Discrete-Variable Protocols [3.749120127914018]
We develop a method to connect the infinite-dimensional description of optical continuous-variable key distribution protocols to a finite-dimensional formulation.
The secure key rates of quantum optical QKD protocols can then be evaluated using recently-developed reliable numerical methods for key rate calculations.
arXiv Detail & Related papers (2021-01-14T18:59:19Z) - Improved DIQKD protocols with finite-size analysis [2.940150296806761]
We show that positive randomness is achievable up to depolarizing noise values of $9.33%$, exceeding all previously known noise thresholds.
We also develop a modification to random-key-measurement protocols, using a pre-shared seed followed by a "seed recovery" step.
arXiv Detail & Related papers (2020-12-16T03:04:19Z) - A Robust Functional EM Algorithm for Incomplete Panel Count Data [66.07942227228014]
We propose a functional EM algorithm to estimate the counting process mean function under a missing completely at random assumption (MCAR)
The proposed algorithm wraps several popular panel count inference methods, seamlessly deals with incomplete counts and is robust to misspecification of the Poisson process assumption.
We illustrate the utility of the proposed algorithm through numerical experiments and an analysis of smoking cessation data.
arXiv Detail & Related papers (2020-03-02T20:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.