A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares
- URL: http://arxiv.org/abs/2211.05727v1
- Date: Thu, 10 Nov 2022 17:51:08 GMT
- Title: A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares
- Authors: Coralia Cartis, Jaroslav Fowkes, Zhen Shao
- Abstract summary: We propose a Randomised Subspace Gauss-Newton (R-SGN) algorithm for solving nonlinear least-squares optimization problems.
A sublinear global rate of convergence result is presented for a trust-region variant of R-SGN, with high probability.
- Score: 0.6445605125467572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a Randomised Subspace Gauss-Newton (R-SGN) algorithm for solving
nonlinear least-squares optimization problems, that uses a sketched Jacobian of
the residual in the variable domain and solves a reduced linear least-squares
on each iteration. A sublinear global rate of convergence result is presented
for a trust-region variant of R-SGN, with high probability, which matches
deterministic counterpart results in the order of the accuracy tolerance.
Promising preliminary numerical results are presented for R-SGN on logistic
regression and on nonlinear regression problems from the CUTEst collection.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Precise asymptotics of reweighted least-squares algorithms for linear diagonal networks [15.074950361970194]
We provide a unified analysis for a family of algorithms that encompasses IRLS, the recently proposed linlin-RFM algorithm, and the alternating diagonal neural networks.
We show that, with appropriately chosen reweighting policy, a handful of sparse structures can achieve favorable performance.
We also show that leveraging this in the reweighting scheme provably improves test error compared to coordinate-wise reweighting.
arXiv Detail & Related papers (2024-06-04T20:37:17Z) - A Structure-Guided Gauss-Newton Method for Shallow ReLU Neural Network [18.06366638807982]
We propose a structure-guided Gauss-Newton (SgGN) method for solving least squares problems using a shallow ReLU neural network.
The method effectively takes advantage of both the least squares structure and the neural network structure of the objective function.
arXiv Detail & Related papers (2024-04-07T20:24:44Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Robust empirical risk minimization via Newton's method [9.797319790710711]
A new variant of Newton's method for empirical risk minimization is studied.
The gradient and Hessian of the objective function are replaced by robust estimators.
An algorithm for obtaining robust Newton directions based on the conjugate gradient method is also proposed.
arXiv Detail & Related papers (2023-01-30T18:54:54Z) - Stochastic Mirror Descent for Large-Scale Sparse Recovery [13.500750042707407]
We discuss an application of quadratic Approximation to statistical estimation of high-dimensional sparse parameters.
We show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution.
arXiv Detail & Related papers (2022-10-23T23:23:23Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Nonconvex sparse regularization for deep neural networks and its
optimality [1.9798034349981162]
Deep neural network (DNN) estimators can attain optimal convergence rates for regression and classification problems.
We propose a novel penalized estimation method for sparse DNNs.
We prove that the sparse-penalized estimator can adaptively attain minimax convergence rates for various nonparametric regression problems.
arXiv Detail & Related papers (2020-03-26T07:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.