Quantum generalized Calogero-Moser systems from free Hamiltonian
reduction
- URL: http://arxiv.org/abs/2211.05751v3
- Date: Mon, 17 Jul 2023 08:11:54 GMT
- Title: Quantum generalized Calogero-Moser systems from free Hamiltonian
reduction
- Authors: Katarzyna Kowalczyk-Murynka, Marek Ku\'s
- Abstract summary: The one-dimensional system of particles with a $1/x2$ repulsive potential is known as the Calogero-Moser system.
We present a detailed and rigorous derivation of the generalized quantum Calogero-Moser Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The one-dimensional system of particles with a $1/x^2$ repulsive potential is
known as the Calogero-Moser system. Its classical version can be generalised by
substituting the coupling constants with additional degrees of freedom, which
span the $\mathfrak{so}(N)$ or $\mathfrak{su}(N)$ algebra with respect to
Poisson brackets. We present the quantum version of this generalized model. As
the classical generalization is obtained by a symplectic reduction of a free
system, we present a method of obtaining a quantum system along similar lines.
The reduction of a free quantum system results in a Hamiltonian, which
preserves the differences in dynamics of the classical system depending on the
underlying, orthogonal or unitary, symmetry group. The orthogonal system is
known to be less repulsive than the unitary one, and the reduced free quantum
Hamiltonian manifests this trait through an additional attractive term
$\sum_{i<j}\frac{-\hbar^2}{(x_i-x_j)^2}$, which is absent when one performs the
straightforward Dirac quantization of the considered system. We present a
detailed and rigorous derivation of the generalized quantum Calogero-Moser
Hamiltonian, we find the spectra and wavefunctions for the number of particles
$N=2,3$, and we diagonalize the Hamiltonian partially for a general value of
$N$.
Related papers
- Quantum Hamilton-Jacobi Theory, Spectral Path Integrals and Exact-WKB [0.0]
Hamilton-Jacobi theory is a powerful formalism, but its utility is not explored in quantum theory beyond the correspondence principle.
We propose a new way to perform path integrals in quantum mechanics by using a quantum version of Hamilton-Jacobi theory.
arXiv Detail & Related papers (2024-06-12T02:50:43Z) - Discrete-coordinate crypto-Hermitian quantum system controlled by
time-dependent Robin boundary conditions [0.0]
unitary quantum mechanics formulated in non-Hermitian (or, more precisely, in hiddenly Hermitian) interaction-picture representation is illustrated via an elementary $N$ by $N$ matrix Hamiltonian $H(t)$ mimicking a 1D-box system with physics controlled by time-dependent boundary conditions.
Our key message is that contrary to the conventional beliefs and in spite of the unitarity of the evolution of the system, neither its "Heisenbergian Hamiltonian" $Sigma(t)$ nor its "Schr"odingerian Hamiltonian" $G(
arXiv Detail & Related papers (2024-01-19T13:28:42Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - The $\hbar\to 0$ limit of open quantum systems with general Lindbladians: vanishing noise ensures classicality beyond the Ehrenfest time [1.497411457359581]
Quantum and classical systems evolving under the same formal Hamiltonian $H$ may exhibit dramatically different behavior after the Ehrenfest timescale.
Coupling the system to a Markovian environment results in a Lindblad equation for the quantum evolution.
arXiv Detail & Related papers (2023-07-07T17:01:23Z) - Third quantization for bosons: symplectic diagonalization, non-Hermitian
Hamiltonian, and symmetries [0.0]
We show that the non-Hermitian effective Hamiltonian of the system, next to incorporating the dynamics of the system, is a tool to analyze its symmetries.
As an example, we use the effective Hamiltonian to formulate a $mathcalPT$-symmetry' of an open system.
arXiv Detail & Related papers (2023-04-05T11:05:17Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Qubit regularization of asymptotic freedom [35.37983668316551]
Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
arXiv Detail & Related papers (2020-12-03T18:41:07Z) - Non-Hermitian N-state degeneracies: unitary realizations via
antisymmetric anharmonicities [0.0]
degeneracy of an $N-$plet of bound states is studied in the framework of quantum theory of closed (i.e., unitary) systems.
For an underlying Hamiltonian $H=H(lambda)$ the degeneracy occurs at a Kato's exceptional point.
arXiv Detail & Related papers (2020-10-28T14:41:52Z) - Sample-efficient learning of quantum many-body systems [17.396274240172122]
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs state.
We give the first sample-efficient algorithm for the quantum Hamiltonian learning problem.
arXiv Detail & Related papers (2020-04-15T18:01:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.