論文の概要: Data-Driven Disease Progression Modelling
- arxiv url: http://arxiv.org/abs/2211.05786v1
- Date: Tue, 1 Nov 2022 10:55:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 14:09:08.230812
- Title: Data-Driven Disease Progression Modelling
- Title(参考訳): データ駆動型疾患進展モデリング
- Authors: Neil P. Oxtoby
- Abstract要約: データ駆動型疾患進行モデルがコンピュータ科学コミュニティから登場した。
本章では、疾患の進行の理解と予測のためのユーティリティに焦点を当て、現場から選択したハイライトについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intense debate in the Neurology community before 2010 culminated in
hypothetical models of Alzheimer's disease progression: a pathophysiological
cascade of biomarkers, each dynamic for only a segment of the full disease
timeline. Inspired by this, data-driven disease progression modelling emerged
from the computer science community with the aim to reconstruct
neurodegenerative disease timelines using data from large cohorts of patients,
healthy controls, and prodromal/at-risk individuals. This chapter describes
selected highlights from the field, with a focus on utility for understanding
and forecasting of disease progression.
- Abstract(参考訳): 2010年以前の神経学コミュニティにおけるインセンスの議論は、アルツハイマー病の進行の仮説モデル、すなわちバイオマーカーの病態生理学的カスケードにおいて頂点に達した。
これを受けて、データ駆動型疾患の進行モデルがコンピュータサイエンスのコミュニティから登場し、患者の大規模なコホート、健康管理、そしてプロドロマ/アトリスクの個人のデータを用いて、神経変性疾患のタイムラインを再構築することを目的としている。
本章では,疾患進展の理解と予測のための有用性に着目し,現場から選択したハイライトについて述べる。
関連論文リスト
- A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - Learning Spatio-Temporal Model of Disease Progression with NeuralODEs
from Longitudinal Volumetric Data [4.998875488622879]
我々は,1つの医療スキャンを処理し,加齢関連疾患の進化をモデル化する深層学習手法を開発した。
ジオグラフィック・アトロフィーの場合,提案手法はアトロフィ成長予測において,関連するベースラインモデルよりも優れていた。
アルツハイマー病に対して, 提案法は, 疾患によって引き起こされる脳の心室変化を予測する上で, 顕著な性能を示した。
論文 参考訳(メタデータ) (2022-11-08T13:28:26Z) - Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease
Progression Modeling [11.768140291216769]
本稿では,多発性疾患の進行動態を検出する階層型時系列モデルを提案する。
本稿では,パーキンソン病に対する合成データセットと実世界縦断データセットを用いたモデルの有用性について述べる。
論文 参考訳(メタデータ) (2022-07-24T23:17:06Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Toward a multimodal multitask model for neurodegenerative diseases
diagnosis and progression prediction [0.5735035463793008]
本稿では、アルツハイマー病の予測に使用されるモデルの様々なカテゴリを、それぞれの学習手法で概説する。
それは、アルツハイマー病の進行を早期に予測し、検出する比較研究を確立している。
最後に,ロバストかつ高精度な検出モデルを提案する。
論文 参考訳(メタデータ) (2021-10-10T11:44:16Z) - Investigating the Relationship Between World Development Indicators and
the Occurrence of Disease Outbreaks in the 21st Century: A Case Study [0.0]
病気の発生に弱い社会経済セクターのタイムリーな識別は、市民当局にとって重要な課題である。
我々は、データ駆動モデルを利用して、世界開発指標の傾向と病気の発生との関係を判断する。
論文 参考訳(メタデータ) (2021-09-20T06:31:03Z) - Learning transition times in event sequences: the Event-Based Hidden
Markov Model of disease progression [4.12857285066818]
我々は、イベントベースと隠れマルコフモデリングのアイデアを結びつけて、疾患進行の新しい生成モデルを作成する。
我々のモデルは、限られたデータセットから最も可能性の高いグループレベルのシーケンスとイベントのタイミングを推測することができる。
我々は,アルツハイマー病神経画像イニシアチブの臨床的,画像的,バイオ流体的データを用いて,我々のモデルの有効性と有用性を実証した。
論文 参考訳(メタデータ) (2020-11-02T15:13:03Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。